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Abstract 

The significant change in climate is evident from the records of increased temperature, changed 

precipitation pattern, increased frequency of extreme weather events like storms, floods, and so 

forth. Like other infrastructure highway infrastructures also suffer the consequences of these 

climate change. Since the hydraulic design of these infrastructures is performed using historical 

climate data, the designs may not be able to provide services because designs are not considering 

climate change influence especially in terms of precipitation intensity. This study aims at 

identifying the most accurate source of climate database that predicts future climate change with 

less uncertainty and links them into the evaluation of vulnerability and risk of the bridges so that 

the impact of future climate can be incorporated into the design of new infrastructures. In this 

study, the NARCCAP database has been used to extract the future climate data for different 

cities of SPTC representing states. Climate models have predicted as high as 10.2% increase in 

precipitation for Houston, Texas, which leads to an increase in the intensity of streamflow in that 

region. A hydraulic model has been established using HEC-RAS for streamflow modeling. 

Overtopping depth and scour depth have been estimated as the primary vulnerability stressors of 

the bridge. This study has estimated the range of the return periods of the floods for which bridge 

may fail under the predicted future climate scenarios. The annual economic loss has been 

calculated for the bridges, and possible adaptation strategies have been suggested using HYRISK 

software.   
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1. INTRODUCTION 

1.1 ADDRESSING THE PROBLEM 

Although the influence of climate change on highway infrastructure needs to be evaluated, the 

aggregation of complex and interdependent competing factors to predict the impact of climate 

change on transportation infrastructure is challenging. On the contrary, in action will leave 

infrastructure vulnerable to climate change. However, it is very likely that the impact of 

individual factors like the impact of precipitation on transportation infrastructure can be 

evaluated. According to climate scientists (Intergovernmental Panel on Climate Change, 2013), 

the increase in greenhouse gas (GHG) emissions will lead to higher humidity that will eventually 

lead to higher precipitation rates. Although the change in mean precipitation levels seems to have 

less impact on transportation infrastructure, the increase in the intensity and frequency of 

precipitation can impact on transportation infrastructure such as slope instability, reduced 

bearing capacity due to saturation, and so forth. Similarly, the runoff resulting from increased 

precipitation could also lead to increased peak streamflow especially if rivers are swollen from, 

and soils are already saturated with the previous storm. The increased runoff would require a 

change in the sizing requirement for bridges and gutters (Warren et al., 2004).  

The prediction of intensity and frequency of precipitation and associated runoff due to climate 

change can be estimated using historical weather database or using climate models developed by 

various agencies (NOAA, USGS, etc.) that predict future global climate conditions. The climate 

prediction models are downscaled using statistical or dynamic downscaling approach to predict 

climate conditions at the regional or local levels. Since global models have inherent variability 

associated with their prediction capabilities, the downscaling further enhances levels of 

uncertainty associated with future predictions. The compound influence of uncertainty may lead 

to erroneous sizing requirements in the event climate predictions are inaccurate. Therefore, 

overestimating climate event can result in costly oversizing of infrastructure while 

underestimating climate event will leave infrastructure vulnerable. Therefore, vulnerability and 

risk assessment need to be performed to identify cost-effective adoption solutions. 
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Based on the above discussion, there is a need to evaluate the impact of intensity and frequency 

of precipitation on existing infrastructure and propose cost-effective solutions to enhance the 

service life of highway infrastructure by making them resilient to the climate change. 

1.2 OBJECTIVES AND SCOPES OF THE STUDY 

The following objectives have been formulated in understanding the climate change 

impacts on the hydraulic design of bridge infrastructures:  

1) To identify the primary climatic stressor for the hydraulic bridge design. 

2) To recognize and analyze the future change in the climate factor, predicted by climate 

model simulation. 

3) To evaluate the bridge hydraulic design criteria for future climate through risk and 

vulnerability assessment. 

4) To suggest possible adaptation strategies.  

Laying focus on the objectives stated above the research has been conducted within the 

scope of the following tasks:  

1) Theoretical Review on the bridge hydraulic design practices followed by different State 

and Federal agencies.  

2) Extracting simulated future climate data from climate models from NARCCAP (North 

American Regional Climate Change Assessment Program) and modified with an 

appropriate method. 

3) Developing a hydraulic model for the studied bridges using HEC-RAS (Hydraulic 

Engineering Center-River Analysis System) and communicate the climatic factor to the 

hydraulic model. 
 

1.3 ORGANIZATION OF THE REPORT 

The report is organized in six chapters. It includes various aspects of bridge vulnerability 

assessment and adaptation techniques to mitigate the impact of climate change. 
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 Chapter 1 provides the brief introduction to the nature of the problem and objectives and 

scopes of the study. 

 Chapter 2 contains the literature review of different climate models and previous works 

done in the field of climate change impact on highway infrastructures. This chapter also 

contains a review of bridge hydraulic design practices by different Department of 

Transportations (DOTs). 

 Chapter 3 contains the extracted climate data from different climate models. 

 Selection of climatic stressors and communicating those stressors to the hydraulic model 

have been discussed in Chapter 4. 

 Chapter 5 describes the vulnerability and risk analysis of the bridge from overtopping and 

scour and the possible adaptation techniques. 

 In chapter 6, a framework has been presented to compute the scour depth using Machine 

Learning platform. 

 The report ends with Chapter 7 that contains a summary, conclusion, and 

recommendations for further research. 

 References 

 Appendix A contains the bias-corrected climate data for cities of Texas, New Mexico, 

Louisiana, Oklahoma, and Arkansas.  
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2. LITERATURE 

2.1. REVIEW OF LITERATURE 

Climate scientists have been conducting studies on the recognition of the pattern change in 

different climatic variables and their impacts on the earth systems. In their fifth assessment 

report, published in 2013, Intergovernmental Panel on Climate Change (IPCC) has been reported 

an increase of global mean temperature by 0.780 C and rising of the sea level by 7.5 inches, over 

the past century. U.S. Climate Change Science Program (CCSP) 2008, a report by the U.S 

climate change program, provides evidence of changes in weather and climate extremes such as 

temperature, precipitation which includes droughts, heavy precipitation, tropical storms and 

cyclones, winter storms, etc. According to CCSP 2008 report, in the continental U.S. intense 

precipitation (the heaviest 1% of the daily precipitation totals) has been increased by about 20% 

over the past 100 years, while total precipitation increased by only 7%.  

A clear indication of climate change leads many agencies to conduct climate change impact 

studies, such as the Gulf Coast study (Phase I & Phase II). This study includes the impact of 

climate change on transportation infrastructures. Like other infrastructure systems, transportation 

infrastructures are also vulnerable to change in different climatic variables like heavy 

precipitation, rising temperature, increase in sea levels, the frequency of extreme events like 

hurricanes and storm surges, etc. Agencies like the United States Department of Transportation 

(USDOT) and Federal Highway Administration (FHWA) has done several studies on the impact 

of the climate change on the transportation infrastructures.   

USDOT Gulf Coast Study Phase I (Savonis, Burkett and Potter, 2008), has been done for U.S. 

central Gulf Coast between Galveston, Texas, and Mobile, Alabama. This study showed the 

vulnerability of the transportation infrastructure to the temperature increase, flooding due to 

rising sea level and changed precipitation patterns. According to this study, 27% of the major 

roads, 9% of the rail lines, and 72% of the ports are built on the land which is below 122 cm (4 

feet) in elevation and is more vulnerable to frequent or permanent inundation due to change in 

precipitation pattern. It also reported, more than half of the area’s major highways, rail lines, 29 
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airports and lower elevation ports are in danger of damage due to inundation during hurricane 

storm surges.  

To quantify the vulnerability of the transportation infrastructures to the changing climate, 

USDOT has developed some tools and approaches in their second phase of the Gulf Coast Study 

(Hayhoe and Stoner, 2012), which is done in Mobile, Alabama. This study has analyzed the 

impacts based on future climate data collected from climate models. They have developed a 

sensitivity matrix to identify potential climate stressors in transportation components. They have 

also created Vulnerability Assessment Scoring Tool (VAST) which qualitatively evaluate the 

assets vulnerability. 

In 2010 to 2011, different DOTs and Metropolitan Planning Organizations (MPOs) have 

conducted five climate change resilient pilots, to assess the climate change impacts on different 

transportation assets. These studies have been conducted based on FHWA’s conceptual risk 

assessment model (FHWA website).  

Metropolitan Transportation Commission: San Francisco Bay (FHWA,2012) has developed 

inundation maps for the coast region using future projection climate data. They reported nearly 

all the shoreline assets would be inundated with the extreme sea level rise scenario. The future 

projection shows minor flooding in mid-century, but the end of the century will face major 

flooding which will require drastic adaptation strategies. A pilot study done by the New Jersey 

Transportation Planning Authority (FHWA,2012), showed the impact of increased heat on 

transportation assets and the rise of sea level to infrastructures near the shoreline. It was reported 

that temperatures higher than 95°F would increase the risk of rail kinks and during extreme heat 

overhead wires may sag or experience pulley failures.  

In 2013-2015, FHWA has done 19 pilot studies with the help of different DOTs and MPOs based 

on the ‘Climate Change and Extreme Weather Vulnerability Assessment Framework, 2012’, 

which has been later modified in the 3rd edition of the report (Filosa et al.,2017). In these 

studies, different agencies worked on climate change impact on different transportation assets. 

They have used the FHWA’s framework to assess the vulnerability of the assets and come up 

with adaptation options and resiliency improvement. 
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Iowa DOT (Anderson et al.,2015) has conducted a climate change impact study on the 

vulnerability of bridges, mainly due to the increase in peak streamflow resulted from increased 

precipitation, predicted by 19 climate models. They have analyzed six bridges in Iowa and 

suggest possible adaptation strategies. Connecticut DOT (Hogan et al., 2014) have conducted a 

system-level vulnerability assessment of bridge and culvert for inland flooding resulted from 

rainfall events. In this study, they evaluated 52 structures for current precipitation data and 

analyzed their sufficiency in design. 65% of the structure satisfied design criteria. They have 

shown the connection of precipitation data to a hydraulic model of the channel using USGS 

regression equations or stream stats. 

Moreover, the Minnesota DOT (Almodovar-rosario et al., 2014) have studied bridge and culverts 

resiliency against flash flooding, predicted for future climate scenarios. They have evaluated 

structures for three risk level, low, medium and high represented by RCP 4.5, 6.0 and 8.5). The 

study also analyzed the adaptation options through economic analysis using COAST tool. 

Research has been less focused on rectifying the disparity between the output of the climate 

models and the needed input for bridge hydraulic engineers to incorporate climate change in 

current design practices. Climate models are generally too coarse spatially and temporally for use 

in hydraulic design, nor are climate models built with the intent to design new bridges. Hydraulic 

design techniques rely on rigorous statistical analysis of historical observations whereas climate 

is based on complex sets of interdependent parameters to describe the physical processes 

between the atmosphere, ocean, and land. Hydraulic design techniques of bridges look at sets of 

past data to project the future, whereas climate models are trained on past observations but then 

are forced by assumed increases in greenhouse gases to predict the future, often in a non-

stationary manner. Therefore, this study focuses on draw inferences from climate data to check 

on the resiliency of the bridge infrastructures for this future climate and identify the possible 

adaptation techniques. 
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2.2 CLIMATE MODELS 

Initially, climate prediction models were developed based on future emission scenarios 

commonly known as Special Report on Emission Scenarios or “SRES” (Nakicenovic and Swart, 

2000). Various emission scenarios, used in climate models, are summarized in Table 2-1.  

Table 2-1 SRES based Emission Scenario (IPCC, 2000) 

Storyline Emission Scenario Description 

A1 storyline 

Rapid economic growth, the global population that peaks in mid-century and 

then declines, and the early introduction of new and more efficient 

technologies. A1F1, A1T, and A1B. 

A2 storyline 

A complex world with an increase in the global population at a constant rate. 

Economic development is primarily regionally oriented, and per capita, 

economic growth and technological change are more fragmented and slower 

than in other storylines. 

B1 storyline 

A convergent world with the same global population as in A1 storyline, but 

with rapid changes in economic structures and the introduction of clean and 

resource-efficient technologies. 

B2 storyline 

Emphasis is on local solutions to economic, social, and environmental 

sustainability with continuously increasing global population at a rate lower 

than A2, intermediate levels of economic development, and less rapid and 

more diverse technological change. 

 

In the last decade, revised scenarios were developed by IPCC for their fifth Assessment Report 

(IPCC AR5, 2014). The revised scenarios are based on representative concentration pathways 

(RCPs) that specifies the concentrations and corresponding emissions. The RCP approach uses 

greenhouse gas (GHG) concentration trajectories instead of emissions to predict climate change 

(Stocker et al., 2014). The RCP based on radiative forcing utilized for the projection in climate 

models in Table 2-2. 
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Table 2-2 RCPs as per AR5, 2014 

 

The recently developed Global Climate Models (GCMs) and the regional climate models 

(RCMs) use these different emission scenarios for projecting future climate. The GCMs provide 

climate data for a large geographical area while the RCMs are developed to generate climate data 

at a higher fidelity for regional areas. The different climate data sources, available based on 

emission scenarios, downscaling methods, GCMs, RCMs, and spatial and temporal coverage are 

summarized in Table 2-3. 

 

RCP Radiative Forcing Levels 

RCP2.6 

Minimal GHG concentration levels. It is radiative forcing level first reaches a value 

around 3.1 W/m2 mid-century, returning to 2.6 W/m2 by 2100. GHG is reduced 

substantially over time to achieve such radiative forcing levels. 

RCP4.5 

It is a stabilization scenario where total radiative forcing is stabilized before 2100 by 

the employment of a range of technologies and strategies for reducing GHG 

emissions. 

RCP6.0 

It is a stabilization scenario where total radiative forcing is stabilized after 2100 

without overshoot by the employment of a range of technologies and strategies for 

reducing GHG emissions. 

RCP8.5 
The RCP 8.5 is characterized by increasing GHG emissions over time representative 

for scenarios leading to high GHG concentration levels. 
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Table 2-3 Climate Data Sources Based on Different Emission Scenario and Downscaling Methods 

Climate Source/ Downscaling Method/ 

Emission Scenario 
Parameters/Spatial Resolution Climate Models Coverage 

  

Daily: (table 1) maximum and minimum 

daily surface air temperature     

North American Regional Climate Change 

Assessment Program (NARCCAP) uses 

Dynamic downscaling and is based on SRES 

A2.  (Mearns et al., 2007 and 2009) 

3-hourly: (table 2) precipitation, surface 

air temperature, cloud fraction, wind 

speed, relative humidity. 

4 GCMs and 6 RCMs 

Phase I, wherein six RCMs use boundary conditions from the NCEP–

DOE Reanalysis II (R2) for a 25-yr period (1980–2004), and phase II, 

wherein the boundary conditions are provided by four AOGCMs for 

30 years of current climate (1971–2000) and 30 years of a future 

climate (2041–70)  

  Spatial resolution: 50x50 km     

Downscaled CMIP3 and CMIP5  

(a) Monthly projections of total 

precipitation and monthly-mean daily 

average temperature; and 
  

BCSD: Coverage: 1950-2099 resolution: monthly                  

BCCA: CMIP3 coverage: 1961-2000, 2046-2065, 2081-2100 

Climate and Hydrology Projections uses 

statistical downscaling. CMIP3 uses SRES B1, 

A1B, A2 while CMIP5 uses RCP2.6, RCP4.5, 

RCP6.0, RCP8.5 (Brekke et al., 2013) 

(b) Daily projections of the precipitation, 

daily minimum temperature, and daily 

maximum temperature. 

CMIP3 - 16 climate 

models                                                           

CMIP5 - 23 climate 

models 

CMIP5 coverage: 1950-2099 resolution: daily 

  Spatial resolution: 1/8° (12x12km)                              

  

1) Maximum and Minimum daily 

temperature near the surface.                                

2) Maximum and Minimum daily relative 

humidity     

MACA CMIP5 Archive uses empirical 

downscaling and has RCP4.5 and RCP8.5 

projections.  

3) Average daily precipitation amount at 

the surface 

20 global climate models 

of the Coupled Inter-

Comparison Project 5 

(CMIP5) 

Historical: 1950-2005 Future: 2006-2100 

  Spatial resolution: 4-6km     

NASA NEX DCP30 National Climate Change 

Viewer (NCCV) uses empirical downscaling 

and has RCP4.5 and RCP8.5 projections.  

Maximum and Minimum Temperature, 

Precipitation, Runoff                Spatial 

resolution: 800-m grid over the CONUS 

30 of the Coupled Inter-

Comparison Project 5 

(CMIP5) 

Dataset coverage: 1950-2005, 2025-2049, 2050-2074, and 2075-2099 

Program for Climate Model Diagnosis and 

Intercomparison (PCMDI) CMIP5 Archive. It 

uses RCP2.6, RCP4.5, RCP6.0, RCP8.5 

  
20 Climate modeling 

groups 

provide projections of climate change on two time scales, near-term 

(out to about 2035) and long-term (out to 2100 and beyond) 
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For this study, the North American Regional Climate Change (NARCCAP) that utilizes Special 

Report on Emission Scenario (SRES) A2 emission scenarios for predicting future climate was 

selected because of its suitability to hydraulic design procedures. This climate data source uses a 

dynamic downscaling method to produce the data at the local resolution of 31 x 31 miles (50 x 

50 km). 

2.3 BRIDGE HYDRAULIC DESIGN PRACTICES 

2.3.1 GENERAL BRIDGE HYDRAULICS  

Given that hydraulic analysis of bridges depends on a range of factors, like topographic data, 

river conditions, proper streamflow estimation, accuracy in flow modeling approaches or the 

floodplain conditions, etc., it is a complicated process. Besides, regulatory requirements set by 

different agencies (i.e. FHWA, USACE, FEMA, etc.) must be satisfied to choose a proper 

hydraulic analysis model for bridges (Zevenbergen, Arneson, Hunt and Miller, 2012). 

Generally, hydraulic analysis of bridges is performed by computing the energy losses caused by 

the built structure. So, modeling of bridge section primarily depends on the following factors: 

 Bridge cross-section locations 

 Flow types at the bridge sites 

 Hydraulic flow computation 

Bridge cross-section locations: 

The performance of hydraulic analysis of the bridge required four cross sections along the river. 

These cross sections help to capture the characteristics (contraction and expansion) of the flow 

through bridge opening. Figure 2-1 shows the plan view of the four controlled sections. The first 

cross-section, the cross-section one should be located sufficiently downstream of the structure. 

The function of this cross section is to capture the expansion of the flow after passing through 

the bridge opening. Cross section 2 and three should be located near to the bridge at upstream 

and downstream respectively. However, they should not be placed at the immediate face of the 

bridge deck, to let the flow have some expansion and contraction respectively. The cross-section 

4 is an upstream cross-section which takes in the distance to capture the contraction 

characteristic of the flow. In Figure 2-1, the Le and Lc values represent the distance between 
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two downstream cross-section and upstream cross-section respectively. These values are 

generally determined from the field observation during the high flows. Although, usually Le 

value is twice to the Lc value. 

 

Figure 2-1 Plan View of the Cross-sections needed for Bridge Hydraulics (Brunner et al., 

2008) 
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Flow types of the Bridge Sites: 

Understanding the exact flow types that bridge is going to encounter, is one of the significant 

factors in hydraulic computations of bridges. Flows corresponding to bridge structure can be 

either a low flow or high flow. 

Low flow exists when the flow can pass through the bridge opening. Figure 2-2 shows an 

example of Low flow condition in the bridge. Low flows are classified (A to C) based on the 

depth of the flow with respect to the critical depth of the flow. When the depth of the flow 

exceeds the critical depth (or normal water surface), subcritical flow condition takes place. 

Similarly, when the depth of flow is below the critical depth supercritical flow condition takes 

place. Class A low flow is entirely subcritical flow, meaning the flow depth exceeds the critical 

depth, where gravitational forces dominate, and the flow behaves subtly. Conversely, Class C 

flow is completely supercritical flow. Class B can be either subcritical or supercritical. 

 

Figure 2-2 An Example of Low Flow in Bridge 

 

High flow occurs when the flow depth exceeds the elevation of the high point of the low chord 

of the bridge. High flows can be estimated as sluice gate flow, orifice type flow or weir type 

flow.  Figure 2-3 shows the example of the high flows in the bridge. 
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Figure 2-3 An Example of High Flow in Bridge (Shan et al., 2012) 

 Sluice gate type flow exists when the water surface is in level with the low chord in 

upstream and below in the downstream.  

 Orifice type flow occurs when low chord at both upstream and downstream is submerged. 

 Weir type flow exists when the roadway, even the whole bridge is submerged. 

Hydraulic flow computation 

The methods available for low flow and high flow conditions are as follows: 

For low flow computations: 

 Energy Equation or Standard Step Method 

 Momentum Balance Method 

 Yarnell Equation 

 FHWA WSPRO Method 

For high flow computations: 

 Energy Equation or Standard Step Method 

 Pressure Flow Method 
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2.3.2 OVERTOPPING AND SCOUR ASSESSMENT  

The climate change is anticipated to act as a stressor on the transportation infrastructure due to 

flooding. To evaluate the resilience of transportation infrastructure in the event of the extreme 

event, a vulnerability assessment needs to determine the impact of climate change on 

transportation infrastructure before measures can be identified and prioritized. A bridge is 

vulnerable both regarding overtopping as well as scour criticality during and after an extreme 

event. 

Various transportation agencies have developed methods to identify and locate vulnerable 

locations in the transportation system (Filosa and Oster, 2015). For instance: 

 The Danish Road Directorate follows the Blue Spot method- a four-level analysis to 

identify roadway locations where the likelihood of floods is high, and consequence of 

flooding is significant. 

 The ROADAPT research project, a joint research effort supported by several European 

countries, developed a preliminary risk assessment method that can identify vulnerable 

locations in the transportation network, understand the probabilities and consequences 

that climate change events could have on these locations, and provide options for 

adaptation actions.  

Scouring can remove the soil from the foundation of the bridge, and in case of heavy loss of soil 

particle the bridge collapse.  According to the researcher (Lagasse et al., 2007, Wardhana and 

Hadipriono, 2003), 50 % to 60% of the bridge failures in the USA are caused by scouring. In 

2003, during a heavy rain of 11 inches, the Loon Mountain Bridge in Lincoln, New Hampshire 

collapse due to scouring.  

According to Bridge Scour Evaluation Program, run by FHWA in 2011 on a total number of 

493,473 bridges including Interstate, National Highway System (NHS) and Non-National 

Highway System bridges. They have reported total 23,034 bridges are scour critical including all 

three categories, which results in 4.7% of total bridges. Table 2-4 shows the status of that report. 
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Table 2-4 Survey Report of Bridge Scour Evaluation by FHWA (Arneson et al., 2012) 

Total Number of 

Bridges Surveyed 

Evaluation 

Criteria 

Interstate 

Bridges 

NHS 

Bridges 

Non-

NHS 

Bridges 

Total 

Percent 

of 

Total 

 

Needing 

Evaluation 
80 136 3,701 3,917 0.80% 

493,473 
Foundation 

Unknown 
55 703 40,067 40,825 8.30% 

 
Scour 

Critical 
937 1,936 20,181 23,034 4.70% 

 

Although it is well known scouring causes failure, the assessment of scouring criticality is a 

complex process. The principal scour assessment method available for U.S. bridge designers is 

Hydraulic Engineering Circular No. 18 (HEC-18) published by the FHAWA (Arneson et al., 

2012). The currently available version of the documents is the 5th edition which presents the state 

of knowledge and practices for the design, evaluation, and inspection of bridges for scouring. 

This document contains updated material from previous editions and combined research by 

FHWA, state DOTs, and universities.  

HEC-18 suggests scouring estimation based on soil and rock criteria along with other 

geotechnical considerations. The total scour compiles the contraction scour, and local scour as 

pier and abutment scour. Contraction scour occurs due to the reduction of the flow area of the 

stream at flood stage by a natural contraction of the channel or by a structure (Arneson et al., 

2012). The underlying mechanism causing local scour at piers or abutments is the formation of 

vortices at their base (Arneson et al., 2012). The steps and equations adopted in HEC-18 for 

these scour estimations have been summarized in the next section. 
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Contraction Scour:  

Based on the mechanism of the transport of the bed material contraction can be estimated as live-

bed sour or clear-bed scour. For the live-bed scour estimation, the following equation has been 

proposed (a modified version of Laursen (1963) equation):  

 
𝑦2

𝑦1
= (𝑄2/𝑄1)6/7(𝑊1/𝑊2)𝑘1  (2-1) 

 𝑦𝑠 = 𝑦2 − 𝑦0          (2-2) 

Where, 

𝑦1 = Water depth in the upstream main channel 

𝑦2 = Water depth in the contracted section 

𝑦0 = Existing depth in the contracted section before scour 

𝑄1 = Flow in the upstream section 

𝑄2 = Flow in the contracted channel 

𝑊1 = The bottom width of the upstream main channel 

𝑊2 = The bottom width of the contracted main channel 

𝑘1 = Exponent explaining mode of bed material transport 

The equation used for clear-bed contraction scour estimation is stated below (also modified from 

the Laursen’s (1963) equation). 

 𝑦2 =  [𝐾𝑢𝑄2/𝐷𝑚
2/3

𝑊2]
3/7

 (2-3) 

 𝑦𝑠 = 𝑦2 − 𝑦0  (2-4) 

Where, 

𝑦2 = Water depth in the contracted section  

𝑦0 = Existing depth in the contracted section before scour 

𝐾𝑢 = 0.0077 

Q = Discharge through the bridge  

W = Width of the bridge section 

Dm = Diameter of the smallest non-transportable bed material 
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Pier Scour: 

For the estimation of the scour on the pier, HEC-18 has adopted the Colorado State University 

(CSU) equation: 

 
𝑦𝑠

𝑎
= 2.0𝐾1𝐾2𝐾3(𝑦1/𝑎)0.35𝐹𝑟1

0.43  (2-5) 

 

Where, 

𝑦𝑠 = Scour depth 

𝑦1 = Flow depth immediately upstream of the pier 

𝑎 = Pier width 

K1 = Correction factors for pier nose shape 

K2 = Correction factor for the angle of attack of flow  

K3 = Correction factor for bed condition  

Fr1 = Froude number immediately upstream of the pier 

 

Abutment Scour: 

HEC-18 suggests the use of Froehlich’s (TRB 1989) live bed scour equation or the HIRE 

equation in HDS 6 (FHWA 2001a) for abutment scour estimation. The Froehlich’s equation 

(based on 170-lab experiments for live bed scour) is: 

 
𝑦𝑠

𝑦𝑎
= 2.27𝐾1𝐾2(𝐿′/𝑦𝑎)0.43𝐹𝑟0.61 + 1      (2-6) 

 

Where, 

K1 = Coefficient for abutment shape 

K2 = Coefficient for the angle of the embankment to flow 

L’ = Length of active flow obstructed by the embankment 

𝑦𝑎 = The average depth of flow on the floodplain 

Fr = Froude number of approach flow upstream of the abutment 
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Based on the field data of scour at the end of spurs in Mississippi River, FHWA derived the 

following equation, named HIRE equation in 2001: 

 
𝑦𝑠

𝑦1
= 4 𝐹𝑟0.33

𝐾1

0.55
𝐾2    (2-7) 

Where, 

𝑦𝑠 = Scour depth 

𝑦1 = Depth of flow in the main channel 

Fr = Froude number 

K1 = Abutment shape coefficient 

K2 = Coefficient of the skew angle of the abutment to flow 

 

2.3.3 BRIDGE HYDRAULIC DESIGN PRACTICES BY SPTC DOTs 

This section discusses the common practices adopted by DOTs of the SPTC representative 

states: Texas (TxDOT), New Mexico (NMDOT), Louisiana (LDOT), Oklahoma (ODOT) and 

Arkansas (ArDOT). Although different DOTs have different procedures, they follow a similar 

principle for hydraulic analysis. The analysis is performed based on the effects of a backwater, 

flow distribution and velocities and potential scour measurements for a particular flood 

frequency (TxDOT, 2004; ASHTD, 1982; NMDOT, 1998; LDOT, 2011). According to all 

DOTs, the risk associated with these parameters should be checked while designing the bridge. 

The flood frequency or the annual exceedance probability(AEP) for hydraulic design of a bridge 

is 50-years or 2% (AEP), preferred by TxDOT but practiced by most DOTs. LDOT prefers 25-

years or 50-years AEP based on the local condition. However, design flood frequencies must be 

justified by risk analysis.  

According to AASHTO LRFD (2005), backwater effect should be estimated for 100-year flood 

as base flood and a 500-year flood. The Table 2-5 summarizes the standard design floods for 

hydraulic, scour and scour countermeasures suggested by FHWA. 
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Table 2-5 Design Flood Frequencies for Hydraulic Design, Scour Design and Scour Design 

Countermeasures (Arneson et al., 2012) 

Flood Frequency for Hydraulic 

design 

Flood Frequency for 

Scour 

Flood Frequency for Scour 

Countermeasures 

Q10 Q25 Q50 

Q25 Q50 Q100 

Q50 Q100 Q200 

Q100 Q200 Q500 

 

For scour potential measurement, all SPTC DOTs follow the guidelines and regulations of HEC-

18 by FHWA while ODOT, NMDOT, and LDOT also follow the AAHSTO LRFD Bridge 

Design Specifications. The zest of the specifications are as follows:  

 HEC-RAS for hydraulic analysis and HEC-18 for scour analysis 

 Hydrologic analysis should be done for 2,5,10,25,50,100,200,250 and 500-year floods 

 Scour should be estimated for 100-year flood and 500-year flood or overtopping flood if 

the overtopping flood is less than the 500-year flood. 

 Scour depth prediction mainly emphasis on pier and contraction scour 

 For abutment scour, countermeasures or armoring is preferred  

Given Louisiana has great potential for flooding and migrating, predicted scour depth is the same 

for all the piers and end bents of main bridges as well as relief bridges.  

Although the hydraulic design flood frequency is 100-yr, FHWA increases the standard for 

scouring design flood from 100-yr to 200-yr floods.  

DOTs followed the guidelines proposed in the HEC-23 manual by FHWA for the prevention and 

protection measures for bridges against scouring or overtopping. For pier scour, the general 

considerations are:  

 Reduced number of piers in the main channel,  

 Using circular piles, 

  Using drilled shaft foundations,  

 Aligning the bents to the flow direction and increasing bridge length for reduced through 

bridge velocities.  
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 HEC-23 suggests concrete riprap, stone protection, gabions and grout-filled or sand/ 

cement filled bags for armoring of pier or abutments to prevent from scouring.  

Along with these measures, LDOT also prefers to maintain the slope of the abutment as 3:1, 

(horizontal to vertical ratio) and minimum total scour depth at 5 feet (LDOT,2011).
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3. CLIMATE DATA 

3.1 SELECTION OF CLIMATE STRESSOR 

The identification of appropriate climatic stressor for the risk and vulnerability assessment of 

transportation infrastructure is an essential component for the identification of an effective 

adaptation strategy. The Federal Highway Administration’s Climate Change and Extreme 

Weather Vulnerability Assessment Framework (Error! Reference source not found.) will be 

used in this study to identify the essential climate variables like temperature, extreme 

precipitation events, sea-level, and coastal storm surge, permafrost thaw, snowmelt hydrology, 

etc.  

Hydraulic design of bridges is based on the risk and vulnerability of bridges to frequency and 

intensity of flood events. Precipitation is the primary climatic variable that contributes directly to 

flooding. Although, the temperature is often considered as a climatic factor in bridge 

vulnerability due to its role in flood events. For instance, a warmer atmosphere can hold more 

water, and this could lead to bigger storms with increased intensities and frequencies, although 

warmer atmosphere leads to the drier soil, results in more infiltration, decrease the amount of 

runoff. So, for this study, precipitation has been chosen as the primary climatic stressor. 

3.2 CLIMATE DATA EXTRACTION 

Global climate models (GCMs) capture the future trajectories of greenhouse gas emissions and 

reaction of the global climate system to it. However, GCMs provide information for high spatial 

regions. For local climate change impact analysis, data from GCMs must be downscaled to the 

local scale with finer spatial resolution employing downscaling methods. Among the various 

sources mentioned in the previous chapter, the North American Regional Climate Change 

Assessment Program (NAARCAP) data source has been used in this study for future climate 

change projections of different parameters. The reasons behind using this source are as follows: 

 Availability: The data are easily downloadable given the fact this comes up with grid 

maps. So, for known coordinates (Latitudes and Longitudes) of the stations, the data can 
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be retrieved from the portal. In a previous study performed for the TX DOT, the agency 

has already used the data source and established a MATLAB code to extract the data.  

 Spatial and Temporal resolution: The source provides data with 50 X 50 km spatial 

resolution and 3-hr temporal resolution.  

 Downscaling method: NARCCAP uses the dynamic downscaling for the projection of 

the future climate data. 

NARCCAP program covers the climate change simulations for Conterminous United States 

(CONUS) and most of Canada (Mearns et al., 2007). This program has been established based on 

A2 emission scenario set from SRES for climate projections of the 21st century. Using the 

boundary conditions derived from GCMs, Regional Climate Models (RCMs) have been 

developed to generate climate data at higher resolution. Climate models established with GCMs 

and RCMs in this program performs simulation at a spatial resolution of 50 X 50 km.   

NARCCAP source uses four GCMs and six RCMs. The used RCMs are: 1) Canadian Regional 

Climate Model (CRCM); 2) Hadley Regional Model 3 (HadRM3); 3) Mesoscale Model 5 

(MM5); 4) the National Center for Atmospheric Research, Weather Research and Forecasting 

(WRF); 5) RegCM3; and 6) Regional Spectral Model (RSM). The GCMs used in NARCCAP 

programs are: 1) CCSM; 2) HadCM3; 3) CGM3 and 4) the GFDL model. Thus, twelve climate 

models were identified and are listed in Table 3-1. 

NAARCAP program is a two-phase program. Phase I has six RCMs that use boundary 

conditions from the NCEP-DOE Reanalysis 2 for production of 25 years (1980-2004) 

simulations. In phase II, NARCCAP uses 4 GCMs and 6 RCMs to run simulations of 30 years 

(1971-2000) current data and production of 30 years (2041-2070) future data. NARCCAP data 

are accessible to download for a location using the geographic coordinate system (Latitude and 

Longitude). Using available grid cell maps within the NARCCAP program, different climate 

variables from RCMs can be extracted. 
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Table 3-1 Climate Models in NARCCAP 

RCMs GCMs Emission Scenario 

CRCM CCSM A2 Storyline 

CRCM CGM3 A2 Storyline 

ECP2 GFDL A2 Storyline 

ECP3 HADCM3 A2 Storyline 

HRM3 GFDL A2 Storyline 

HRM3 HADCM3 A2 Storyline 

MM5I CCSM A2 Storyline 

MM5I CGM3 A2 Storyline 

RCM3 GFDL A2 Storyline 

RCM3 CGM3 A2 Storyline 

WRFG CCSM A2 Storyline 

WRFG CGM3 A2 Storyline 

 

3.3 CLIMATE DATA PLOTS 

This study analyzed the climate change phenomenon for all the SPTC representative states 

(Texas, New Mexico, Louisiana, Oklahoma, and Arkansas). This section presents the future 

climatic conditions of different cities of different states regarding the change in mean annual 

precipitation and means annual temperature with respect to existing observed climate data. Mean 

annual precipitation are the average of annual amount of precipitation for a certain amount of 

time period, i.e here for 2041-2017. Similarly, mean annual temperature is the average of yearly 

temperature over a certain time period. Existing temperature and precipitation data have been 

obtained from AASHTOware pavement ME design software website, which documents the data 

from North American Regional Reanalysis (NARR) program in NOAA.  

Figure 3-1 to Figure 3-5 shows the future mean annual precipitation predicted by climate 

models with a comparison of existing one, for different cities of Texas, New Mexico, Louisiana, 

Oklahoma and Arkansas. Most of the climate models predict an increase in precipitation for the 

cities of Texas and New Mexico, where existing mean annual precipitation ranges between 10 to 

45 inches and 10 to 15 inches. However, for Louisiana, Oklahoma, and Arkansas, most of the 
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models predict a decrease in precipitation, where existing precipitation ranges between 50 to 60 

inches, 30 to 40 inches and 40 to 50 inches.  

Figure 3-6 to Figure 3-10 shows the future mean annual temperature predicted by climate 

models with a comparison of the existing one, for different cities of Texas, New Mexico, 

Louisiana, Oklahoma and Arkansas. Most of the climate models predict an increase in mean 

annual temperature for cities of Texas, Louisiana, Oklahoma and Arkansas, but decrease for New 

Mexico. 
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Figure 3-1 Mean Annual Precipitation of Different Cities of Texas for Climate Prediction Models (2041-2070) 
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Figure 3-2 Mean Annual Precipitation of Different Cities of New Mexico for Climate Prediction Models (2041-2070) 
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Figure 3-3 Mean Annual Precipitation of Different Cities of Louisiana for Climate Prediction Models (2041-2070) 
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Figure 3-4 Mean Annual Precipitation of Different Cities of Oklahoma for Climate Prediction Models (2041-2070) 
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Figure 3-5 Mean Annual Precipitation of Different Cities of Arkansas for Climate Prediction Models (2041-2070) 
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Figure 3-6 Mean Annual Temperature of Different Cities of Texas for Climate Prediction Models (2041-2070) 
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Figure 3-7 Mean Annual Temperature of Different Cities of New Mexico for Climate Prediction Models (2041-2070) 
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Figure 3-8 Mean Annual Temperature of Different Cities of Louisiana for Climate Prediction Models (2041-2070) 
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Figure 3-9 Mean Annual Temperature of Different Cities of Oklahoma for Climate Prediction Models (2041-2070) 
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Figure 3-10 Mean Annual Temperature of Different Cities of Arkansas for Climate Prediction Models (2041-2070)
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3.4 BIAS CORRECTION 

Climate models possess inherent uncertainty. So, here, models simulated climate data has been 

analyzed with respect to observed climate data (Collected from NOAA) to evaluate the accuracy 

in the prediction of these models. For this analysis mean annual precipitation data for the period 

of 1979 to 1999 has been used. Figure 3-11 shows that the model simulated data predict much 

higher precipitation than the observed values. So, models produced climate data needs to be 

corrected using bias correction methods before using them in any climate change impact study. 

The bias correction methods provide adjustment factors to minimize the error between the 

historical observed data and model produced current climate data (Hempel et al. 2013). 

Moreover, using that adjustment factor future, climate data also have been adjusted.  

 

Figure 3-11 Model Simulated and Observed Precipitation Data 

While various statistical methods are in practice to adjust the bias of the modeled climate data, in 

this study the ‘delta-change’ method has been used. This method is a simple statistical bias 

correction method. Biases are corrected by taking the difference between observed climate data 

and model produced current climate data.  
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Temperature Bias Correction is done using the following equations (3-1 and 3-2), where 𝛿 is 

calculated as the difference between the bserved mean annual temperature (𝑇𝑜𝑏𝑠) and mean 

model simulated temperature (𝑇𝑚𝑜𝑑). And the bias corrected temperature (𝑇𝑏𝑖𝑎𝑠) is found just 

simply adding to the 𝑇𝑚𝑜𝑑. 

                                                                 𝛿 = 𝑇𝑜𝑏𝑠 − 𝑇𝑚𝑜𝑑                                                  (3-1) 

                                                                 𝑇𝑏𝑖𝑎𝑠 =  𝑇𝑚𝑜𝑑 +  𝛿                                                (3-2) 

While Precipitation Bias Correction is done using equation 3.3 and 3.4., where 𝛿 is calculated by 

taking the ratio of observed mean annual precipitation (𝑃𝑜𝑏𝑠) to model simulated mean annual 

precipitation (𝑃𝑚𝑜𝑑). And then the bias corrected mean annual precipitation (𝑃𝑏𝑖𝑎𝑠) is estimated 

by multiplying with 𝑃𝑚𝑜𝑑.  

                                                                  𝛿 = 𝑃𝑜𝑏𝑠/𝑃𝑚𝑜𝑑                                                    (3-3) 

                                                                 𝑃𝑏𝑖𝑎𝑠 =  𝑃𝑚𝑜𝑑 𝑋 𝛿                                                 (3-4) 

As the climate models are predicting more changes for precipitation, bias correction has been 

done for precipitation according to the Delta change method. Table 3-2 shows the bias-corrected 

precipitation data for Houston, Texas, which has been illustrated in Figure 3-12.  

Table 3-2 Bias Corrected Precipitation Data, Houston, Texas 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 23.2 25.7 39.4 

CRCM-CGCM3 39.4 42.1 40.8 

ECP2-GFDL 49.9 56.8 38.2 

ECP2-HADCM3 82.4 77.1 46.6 

HRM3-GFDL 34.3 37.5 39.8 

HRM3-HADCM3 48.1 45.2 44.9 

MM5I-CCSM 22.6 25.2 37.9 

MM5I-HADCM3 61.9 57.1 48.0 

RCM3-CGCM3 48.1 47.1 44.5 

RCM3-GFDL 53.6 50.1 46.6 

WRFG-CCSM 29.0 28.8 43.9 

WRFG-CGCM3 38.8 39.6 42.7 
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Figure 3-12 Bias Correction for Mean Annual Precipitation, Houston, Texas 

 

Figure 3-12 clearly shows that model (CRCM-CCSM) simulated current data matches the 

observed data. After the bias correction, the models predict the precipitation increase for Huston 

as high as 10.2%, which has been predicted by an MM5I-HADCM3 climate model. All the 

climate model generated future precipitation data of all the cities of SPTC represented states has 

been bias-corrected and cataloged in Appendix A. 
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4. HYDRAULIC MODELLING 

4.1 COMMUNICATING CLIMATE PREDICTIONS TO HYDRAULIC MODEL 

The primary factor influencing bridge infrastructure vulnerability is streamflow, which is 

affected by climate change event like a change of intensity and frequency of precipitation. So, 

precipitation is a main climatic stressor. Linking climate projection data to streamflow 

simulation models is a novel technology in transportation design analysis (Anderson et al., 

2015). Some established and widely used precipitation-runoff models in hydrologic and 

hydraulic are Hydrologic Engineering Centers Rivers Analysis System (HEC-RAS), which was 

developed by the U.S Army Corps of Engineers (USACE), the Soil and Water Assessment Tool 

(SWAT), or the U.S. Soil Conservation Service/Natural Resources Conservation Service 

(NRCS) TR-20 hydrologic model. In this study, Regional regression equations of Texas have 

been used to perform the hydrologic analysis. Moreover, resulted flow data from these equations 

have been used as the input for Hydraulic modeling of the bridge, which has been established 

using HEC-RAS. Both hydrologic and hydraulic modeling for the bridge is discussed in the 

following sections of this chapter. Figure 4-1 shows the methodology used to incorporate the 

predicted precipitation data from climate models to the created hydraulic model. After doing the 

bias correction of climate data as described in previous section, they are feed into the hydrologic 

model to estimate flood quantiles (flood events for different return periods, i.e 100-year flood). 

After the computing the flood quantiles, they would be input in the hydraulic model of the 

bridge. This hydrologic modeling and hydraulic modeling will be discussed in the following 

sections. 
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Figure 4-1 Illustration of the Methodology that has been Followed to Communicate Climate Projection Data to Hydraulic 

Model
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4.2 HYDRAULIC MODELING 

This section describes the methodology that has been applied for hydraulic modeling of the 

bridges. The modeling has been performed using the HEC-RAS model, established by the US 

Army Corps of Engineers. The modeling can be performed in one or two dimensional for steady 

and unsteady flow analysis of the river systems. HEC-RAS has been built with the same 

hydraulic principles that have been followed by most of the transportation agencies for bridge 

design and which have been inscribed in the HEC-18 manual by FHWA. 

The hydraulic modeling using HEC-RAS can be divided into three broad parts. 1) Preprocessing 

or creating the geometry, 2) Inputting hydrologic data or hydrologic modeling, and 3) Hydraulic 

design computations. A general overview of the method is shown in Figure 4-2.  
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Figure 4-2 Bridge Hydraulics Analysis Using HEC-RAS  
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4.2.1 PRE-PROCESSING  

Preprocessing of the hydraulic model or creating the terrain geometry has been done using 

ArcGIS. This involves collecting the Digital Elevation Model (DEM) of the study area and 

creating the raster file of the terrain and shapefiles for the river’s reach, cross sections, bridge 

locations, etc. Then the raster file has been converted to the .tiff file to make it usable in RAS-

mapper of HEC-RAS. Figure 4-3 shows the terrain file created for the Houston-Galveston area. 

For this a 10m DEM has been collected and processed using ArcGIS.  

 

 

Figure 4-3 Illustration of Terrain of Houston_Galvaston area 

After creating the terrain, next step is to define the river’s reach and cross-sections, as well as the 

creating the bridge with all the required characteristic data like deck width, pier shape, and size 

or abutment properties, and so forth. To perform these steps, all the required data have been 

collected from the TxDOT BRINSAP server. The data also includes the previous routine 

inspection survey of the bridge condition. 

To estimate vulnerability of bridges and predict the risk they may face due to climate change in 

future, two bridges situated in Houston (Texas) have been analyzed in this study. The bridges are 

US 59 crossing over West Fork San Jacinto River and SH 36 Crossing over Big Creek.  Among 
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them, bridge US59 that has been already identified as scour-vulnerable according to the National 

Bridge Inventory (NBI) record (FHWA, 2016). Although SH36 is not vulnerable to scouring, it 

is vulnerable to overtopping. The characteristic parameters of these two bridges have been 

presented in this section, which has been used as the input parameters in performing hydraulic 

bridge analysis. 

The case I: US 59 crossing West Fork San Jacinto River, Houston, Texas 

The characteristics of US 59 bridge is situated in the Harris County of Houston District are 

included in Table 4-1.  

Table 4-1 Case I-Characteristics of Bridge US 59 

Bridge Name US 59 

Bridge crossing West Fork San Jacinto River 

TxDOT structural no. 12-102-0177-06-081 

Bridge Coordinate 30o1'35.07"N, 95o15'32.29"W 

Year built 1961 

Bridge Length 1645 feet 

No. of piers 25 

Pier spacing 60 feet 

Pier diameter 16 sq. inches 

Foundation 30 feet concrete piles 

Bridge Opening 60 feet 

 

The case II: SH 36 crossing Big Creek, Houston, Texas 

Similarly, the characteristics of SH 36 bridge is situated in the Fort bend county of Houston 

District are included in Table 4-2. 
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Table 4-2 Case-II Characteristics of Bridge SH 36 

Bridge Name SH 36 

Bridge crossing Big Creek 

TxDOT structural no. 0188-02-023 

Bridge Coordinate 29o28'35.1"N, 95o48'46.97"W 

Year built 1932 

Bridge Length 257 feet 

No. of piers 10 

Pier spacing 25 feet 

Pier diameter 14 sq. inches 

Foundation 25 ft to 35 ft concrete piles 

Bridge Opening 15 feet 

 

4.2.2 HYDROLOGIC MODELING  

For hydraulic simulation using HEC-RAS, the streamflow data is needed, and a description of 

the precipitation-streamflow modeling approach is included in the following paragraphs.  

Although several methods are available to perform the precipitation-streamflow simulation, a 

simple regional regression equation approach is used in this study. While national regression 

equations are available, Texas has established its own sets of regression equations for the 

estimation of annual peak streamflow frequency. Annual peak streamflow frequency or flood 

quantiles represents the peak streamflow with recurrence intervals of 2, 5, 10, 25, 50, 100, 200, 

250 and 500 years. 

In 2009, Asquith and Roussel (2009) in cooperation with the TxDOT established a set of 

equations that relate the basin characteristics to the stream flow of the basin. Although the 

regional regression equations are developed for ‘natural basins,’ the urban development does not 

have many effects on rainfall-runoff generation process. Thus, the used on these equations in an 

urban setting requires caution and a higher factor of safety (Briaud et al., 2009).  

Table 4-3 shows the regional regression equations with adjusted R-factor. The flow with a given 

recurrence interval is related to mean annual precipitation (P [inch]), dimensionless average 

channel slope (S, [L/L]), Drainage area (A, [mile2]), and a parameter Ω, that represents a 

generalized terrain and climate index that describes relative differences in peak streamflow 
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potential across the study area. The Ω can be read from the Figure 4-4 that illustrated the 

ecoregions in Texas with superimposed values of Ω values. 

Table 4-3 the Regional Regression Equations (Asquith and Roussel, 2009) 

Return Period Equations  R-Adjusted 

2 𝑄2 =  𝑃1.398𝑆0.27010[0.776Ω+50.98−50.30𝐴−0.0058] 0.84 

5 𝑄5 =  𝑃1.308𝑆0.37210[0.885Ω+16.62−15.32𝐴−0.0215] 0.88 

10 𝑄10 =  𝑃1.203𝑆0.40310[0.918Ω+13..62−11.97𝐴−0.0289] 0.89 

25 𝑄25 =  𝑃1.140𝑆0.44610[0.945Ω+11.79−9.819𝐴−0.0374] 0.89 

50 𝑄50 =  𝑃1.105𝑆0.47610[0.961Ω+11.17−8.997𝐴−0.0424] 0.87 

100 𝑄100 =  𝑃1.071𝑆0.50710[0.969Ω+10.82−8.448𝐴−0.0467] 0.86 

200 𝑄200 =  𝑃1.034𝑆0.53110[0.975Ω+10.61−8.058𝐴−0.0504] 0.84 

250 𝑄250 =  𝑃1.021𝑆0.54110[0.977Ω+10.56−7.943𝐴−0.0561] 0.83 

500 𝑄500 =  𝑃0.988𝑆0.56910[0.976Ω+10.40−7.605𝐴−0.0554] 0.81 
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Figure 4-4 Eco-Regional Map of Texas with Superimposed Values of the Omega-Em 

parameter (Base from Texas Natural resources Information System digital data Ecoregions 

from Commission for Environmental Corporation, 1997. Scale 1:7,920,000. Albers equal area 

projection, datum NAD 83. Standard parallels 27o30’ and 31o00’, central median -100o00’. 

Horizontal coordinates information is referenced to the North American Datum of 1983 (NAD 

83)) (Asquith and Roussel, 2009) 
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The mean annual precipitation data predicted from different climate models are incorporated in 

these equations, which produce the floods for different recurrence interval. 

Example of Flood Quantile Estimation:  

 River basin: West Fork San Jacinto River 

 Area of Drainage Basin, A = 828 mile2 

 Slope, S = 0.003 

 Ω = 0.14 

 Mean Annual Precipitation, P = Predicted By different models 

The resulted floods for different return period have been listed in Table 4-4. 
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Table 4-4 Flood Quantiles Prediction Using Different Climate Models 

  Existing 
CRCM-

CCSM 

CRCM-

CGM3 

ECP2-

GFDL 

ECP2-

HADCM3 

HRM3-

GFDL 

HRM3-

HADCM3 

MM5I-

CCSM 

MM5I-

HADCM3 

RCM3-

CGM3 

RCM3-

GFDL 

WRFG-

CCSM 

WRFG-

CGM3 

P  43.2 39.23 40.78 38.24 46.56 39.80 44.90 37.90 48.00 44.48 46.57 43.80 42.71 

2 20963.4 18106.8 19114.8 17471.3 23006.3 18475.7 21867.8 17254.5 24007.1 21582.3 23013.2 21122.5 20391.3 

5 48983.5 42709.7 44930.2 41305.4 53436.0 43523.2 50957.9 40825.7 55608.0 50335.3 53451.1 49331.2 47731.6 

10 70186.3 61873.8 64826.4 60000.3 76033.3 62956.9 72784.1 59359.1 78871.0 71965.8 76052.9 70644.4 68534.8 

25 106787.6 94763.9 99043.9 92042.5 115200.0 96335.1 110529.6 91110.1 119270.5 109351.7 115228.3 107448.0 104405.1 

50 140682.8 125301.3 130783.0 121811.8 151412.4 127314.5 145458.6 120615.6 156595.3 143955.8 151448.4 141525.9 137639.3 

100 181663.8 162379.1 169259.9 157994.4 195077.4 164907.3 187638.0 156490.4 201546.1 185758.8 195122.2 182719.0 177853.4 

200 228268.8 204829.2 213202.9 199486.8 244520.9 207907.3 235512.2 197653.1 252344.6 233234.6 244575.2 229548.7 223644.5 

250 245254.3 220370.6 229264.1 214694.1 262488.7 223640.3 252937.3 212745.3 270780.1 250521.9 262546.3 246612.2 240347.8 

500 301482.5 271832.2 282441.1 265053.6 321960.7 275734.1 310617.2 262725.1 331797.0 307746.3 322029.0 303097.6 295644.1 
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The flood of different intervals estimated using different predicted climate models is illustrated 

in Figure 4-5 and Figure 4-6. It shows five models predict higher flood flows than the existing 

one in future, while five models show flow amount can be less for different return periods. 

Figure 4-5 shows the flood flow of different return periods for the San Jacinto River. For 100-

year flood, MM5I-HADCM3 predicts an increase of around 11% than the existing climatic 

condition, where MM5I-CCSM, which predicts around 14% less flow intensity than the existing 

one.  

Similarly, Figure 4-6 shows the floods with different return periods for the predicted climate 

models for the Big Creek watershed. It shows MM5I-HADCM3 predicts almost 11% increase 

and MM5I-CCSM shows around 16% decrease in future 100-year flood flow. 

 

Figure 4-5 Predicted Flood Flows for Future Climate Scenarios, San Jacinto River, 

Houston, Texas 
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Figure 4-6 Predicted Flood Flows for Future Climate Scenarios, Big Creek, Houston, Texas 

4.2.3 HYDRAULIC SIMULATIONS 

The very first step in performing the hydraulic modeling in HEC-RAS is to choose the 

appropriate modeling approach. Several methods are available for bridge hydraulic modeling in 

HEC-RAS interface, for both low flow and high flow conditions.  

For low flow computations: 

 Energy Equation or Standard Step Method 

 Momentum Balance Method 

 Yarnell Equation 

 FHWA WSPRO Method 

For high flow computations: 

 Energy Equation or Standard Step Method 

 Pressure Flow Method 

For low flow methods, HEC-RAS provides the opportunity to choose all the methods and 

compute according to the highest energy answer. However, for high flow, one has to choose 

either energy step method or pressure flow method. This study involves the computation of the 

overtopping potential, so pressure flow method is a proper choice for high flow simulations.  
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Although HEC-RAS provides an opportunity to perform both steady and unsteady flow analysis, 

a steady gradually varied flow analysis was performed in this study. To perform a steady 

analysis, a reach boundary condition has to be set. As from the Digital Elevation Model (DEM), 

the slope of the reach can be easily evaluated, and boundary conditions have been set using 

Normal depth of the downstream. Figure 4-7 shows the hydraulic simulations for 100-year flood 

events for bridge US 59 crossing the West Fork San Jacinto River.  

 

Figure 4-7 Hydraulic Simulation of the Bridge US 59 Using HEC-RAS 
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5. VULNERABILITY AND RISK ASSESSMENT 

5.1. VULNERABILITY ASSESSMENT OF BRIDGE 

Bridges are generally vulnerable to failure due to scouring of the foundation materials, 

overtopping, hydrodynamic forces to bridge superstructures, debris accumulation, etc. (Okeil and 

Cai, 2008, Parola et al., 1998, Bala et al., 2005). Bridge hydraulic design focuses primarily on 

flows responsible for overtopping and flows responsible for scouring. So, the evaluation of an 

existing bridge for the vulnerability is also focused on these two conditions. This section 

discusses how the future climate change will affect the overtopping and scour condition of the 

bridge, with respect to the existing climatic condition. 

5.1.1 VULNERABILITY TO OVERTOPPING  

Overtopping is an important factor of damage to the bridges especially to the approach 

embankments. Besides disrupting the commute networks, hydrodynamic forces occur during the 

submerged condition make the bridge vulnerable to failure. The drag and lift forces pose a 

serious threat to the stability of the bridge deck (Cigada et al., 2001, Malavasi et al., 2001, Kara 

et al., 2015).  

Bridges are overtopped when the water depth at the peak stream flow is above the bridge high 

chord elevation. Figure 5-1 shows the water depth resulted from the flow with different return 

period based on existing climatic condition for the bridge the US 59 over San Jacinto River in 

Houston, Texas. The elevation of the bridge is 63 feet, which is taken as the threshold value or 

overtopping depth to analyze the graph. The hydraulic simulation of the model shows that the 

bridge will be overtopped in the occurrence of a 119-year flood.  
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Figure 5-1 Depth of Water for Different Return Periods under Existing Climatic 

Condition, US59 Bridge, Houston, Texas 

Climate models predict change in the flow magnitude for the future emission scenarios. Return 

periods or flood frequency for the overtopping depth (63’) will also change for this future 

climate predictions. Figure 5-2 shows the predicted water depth for flood with different return 

period for the San Jacinto River. The simulation suggests the bridge will reach the overtopping 

depth at 90-years flood flow (predicted by MM5I-HADCM3), which is 29-years less than the 

existing condition. 

Similarly, Figure 5-3 shows the simulated water depth for bridge SH 36 crossing Big Creek 

watershed for different climate prediction models. According to the hydraulic simulation under 

existing climatic condition, this bridge will be overtopped for 127-year flood flow. However, the 

future climate prediction shows a possibility of overtopping of the bridge for only 87-years flood 

flow. So for future predicted models the bridge in risk for failure due to overtopping even before 

the 100-year flood.  

Water depth simulation results, from Figure 5-2 and Figure 5-3, also depict that the smaller 

water basin (big creek with 84 mile2) shows similar trends for an increase of water depths for all 

models, where big basins (West Fork San Jacinto River with 842 mile2) shows the difference in 

trends. This may help to conclude that the hydraulic simulation for big basins poses more biases 

than the smaller basin. 
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Figure 5-2 Depth of Water for Future Climate Predictions, US59 Bridge, Houston, Texas 

 

 

Figure 5-3 Depth of Water for Future Climate Predictions, SH36 Bridge, Houston, Texas 
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5.1.2 VULNERABILITY TO SCOUR 

The most common reason for bridge failure is the scouring of the bed materials from the 

foundation of the bridge (Melville and Coleman, 2000). The scour depth is measured in this 

study using the HEC-18 manual, published by the Federal Highway Administration (FHWA), 

stated in Chapter Two. The established equations for the estimation of scour at abutment are not 

reliable to predict the scour depth (Briaud et al., 2009, TxDOT 2004, AASHTO LRFD 2007). 

So, the total scour depth comprises the scour occurred due to contraction and scour occurred 

underneath of the pier foundation.  

This study compares the scour vulnerability of an individual bridge for different climate models 

as well as existing condition, concerning the allowable scour depth. Allowable scour depth is the 

function of depth of foundation. The standard practices estimate allowable scour depth as, 

Allowable Scour Depth = ½ x Foundation Depth 

Table 5-1 shows the scour depth estimated for the existing climatic condition for the flood of 

different return interval for the bridge the US 59 over San Jacinto River in Houston, Texas. The 

sour depth for the 100-year flood is 21.96 ft., where as the allowable scour depth of this bridge is 

16 ft. Thus, this bridge is a scour critical bridge. Figure 5-4 illustrates the resulting scour depths 

for different floods. As per as the illustration the bridge will reach the threshold value, or 

allowable scour depth (16’) only for a 55-year flood flow.  

Table 5-1 Scour Depths for Different Flood Events, US59 Bridge, Houston, Texas 

Return Period Scour Depth (ft.) 

2 3.47 

5 4.59 

10 6.6 

25 9.89 

50 15.09 

100 21.96 

200 15.59 

250 15.63 

500 14.34 
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Figure 5-4 Scour Depth for Different Return Periods under Existing Climatic Condition, 

US59 Bridge, Houston, Texas 

Figure 5-5 illustrates the scour depth resulted for different future climate models.  The MM5I-

HADCM3 model predicts the bridge will reach to the allowable scour depth for a 43-year flood 

event. Although, the highest scour depth (which is 27.33 feet) results from the flow predicted by 

a MM5i-CCSM climate model. So, MM5I-HADCM3 shows the scour depth will exceed the 

allowable scour depth earliest, but MM5I-CCSM predicts the highest amount of scour depth (for 

250-year Flood), which is 6 feet higher than the highest scour depth predicted for existing 

climatic condition. 

Similarly, bridge SH 36 is also assessed for scouring, and results are presented in Figure 5-6. 

According to NBI (National Bridge Inventory) record, this bridge is stable for the scour. The 

results for future climate models also suggest that this bridge will be stable for future flows.  
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Figure 5-5 Scour Depth for Future Climate Predictions, US59 Bridge, Houston, Texas 

 

Figure 5-6 Scour Depth for Future Climate Predictions, SH36, Houston, Texas 
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5.2 RISK ANALYSIS 

Risk can be defined as the probability that a particular climate change event occurs during a 

stated period causing damage to assets, including injury, and loss of life. In this study to perform 

risk analysis for bridges, ‘HYRISK’ a tool developed for FHWA was used. The tool performs a 

risk analysis of the bridge based on the ‘probability of failure,’ which accounts for the 

overtopping frequency and scour criticality of the bridge. HYRISK uses the NBI database and 

evaluates the risk of failure with the expected annual loss. According to researchers (Stein and 

Sedmera, 2006, Khelifa et al., 2013, Pearson et al., 2000), HYRISK is the most comprehensive 

method available to perform bridge risk analysis 

The HYRISK model is a combination of Response model, Damage model, and Loss model 

(Khelifa et al., 2013). Response model estimates the probability of overtopping based on the 

bridge’s functional class and water adequacy. Damage models estimate the probability of 

damage based on substructure condition, channel protection, overtopping probability, and age of 

the bridge. Based on the damage, the loss model estimates the total economic costs.  

The economic Loss model is presented below: 

Cost = (C0 +C1)eWL + [C2 (1-T/100)+ C3 T/100]Dad  

              Rebuilding cost             Vehicle running cost                           

+ [C4O (1-T/100) + C5 T/100]Dad/S +  C6X                                                                          

               Time loss cost                               Cost of life 

Where, Cost = total cost of bridge failure ($), C1 = unit rebuilding cost ($/ft2), e = cost multiplier 

for early replacement based on average daily traffic ,W = bridge width, L = bridge length, C2 = 

cost of running automobile (i.e. $0.45/mi), C3 = cost of running truck ($1.30 /mi), D = detour 

length, A = average daily traffic (ADT), d = duration of detour, C4 = value of time per adult in 

passenger car ($/hr), O = average occupancy rate(typically 1.63 adults), T = average daily truck 

traffic (ADTT) form NBI item 109 (% of ADT), C5 = value of time for truck ($22.01/hr), S = 

average detour speed (typically 40 mph), C6 = cost for each life lost (typically $500,000), and X 

= number of deaths resulting from failure. 
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In the end, the final model calculates the annual risk based on the results of all these models.  

Expected annual loss = KP x Cost                                                                                               

Where,  

K = Risk adjustment factor 

P = Probability of bridge failure 

Data required from the NBI database to calculate the risk has been presented in Table 5-2. This 

data is for bridge US59 crossing West Fork San Jacinto River. 

 

Table 5-2 NBI Data for Risk Analysis (FHWA, 2016) 

Bridge Data     

Bridge Length 501.4 km 

Bridge Width 25.2 m 

Year built 1961   

Construction Type Steel Construction   

Detour Length 2 km 

Service under bridge Waterway   

Substructure  Satisfactory Condition   

Waterway Adequacy  
Bridge deck and approaches above flood 

elevations; remote chance of overtopping 
  

Scour Criticality  
The bridge is scoured critically; bridge foundations 

determined to be unstable for calculated scour 
  

Average Daily Traffic 43220   

Truck Traffic (%of 

ADT) 
10   

Route Functional 

Class 
Urban freeway   

 

The cost analysis for the bridge is done using the costs embedded in the software. The basic 

assumptions of the calculation of the cost and the risk are listed in Table 5-3. 
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Table 5-3 Basic Assumptions for Risk Analysis 

Detour speed (km/h) 64 

Occupancy rate 1.57 

Person Time Cost ($/h) 8 

Vehicle Running Cost ($/km) 0.25 

Truck Time Cost ($/h) 30 

Rebuild Cost ($/m2) 645.83 

 

For the existing condition, the model shows the annual failure probability of the bridge is 

0.03959, which results in the expected annual loss of $631600.92. The summarized results are 

shown in Table 5-4. 

Table 5-4 Annual Loss for Existing Climate Condition, Bridge US59, Houston, Texas 

Annual Fail Probability 0.03959 

Rebuilding Cost ($) $16,320,485.76 

Running Cost ($) $3,954,630.00 

Time Cost ($) $3,535,439.22 

Total Cost ($) $23,810,554.98 

Risk ($/yr) $631,600.92 

 

After considering the climate prediction by the climate models, which implied a 10% increase in 

the annual average precipitation, the annual failure probability is also increased. To account for 

this increased precipitation scenario, the annual failure probability of the bridge has been 

calculated based on the following equation (Khelifa et al., 2013). 

                         𝑃𝑣
𝑎 = 𝑚𝑖𝑛{𝑃𝑣𝑥𝐶𝑎}                                                                                                         ( 5-1) 

Where, 𝐶𝑎 is the percent increase in precipitation and 𝑃𝑣 is the probability of bridge failure for an 

existing condition. 

Using this method, the estimated risk becomes $694740.00, listed in Table 5-5, which means the 

annual loss increased by $63,139 for the future increased precipitation.  
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Table 5-5 Annual Loss for Future Predicted Climate Condition, Bridge US59, Houston, 

Texas 

Annual Fail Probability  0.043549 

Rebuilding Cost ($) $16,320,485.76  

Running Cost ($) $3,954,630.00  

Time Cost ($) $3,535,439.22  

Total Cost ($) $23,810,554.98  

Risk ($/yr) $694,740.00  

 

5.3 POSSIBLE ADAPTATION TO VULNERABILITY 

Assessment of bridges for risk and vulnerability should follow with evaluation of possible 

adaptation and protection measures to counteract the problems. Agencies (State DOTs, FHWA, 

etc.) have guidelines for possible mitigation and protection measures to vulnerabilities. 

AASHTO LRFD bridge design specification guide (2005) has suggested specific sets of bridge 

modification that has been adopted and practiced by several agencies like the Oklahoma DOT. 

The modifications suggested by AAHTO LRFD bridge design specifications (2005) are as 

follows: 

 Relocation or redesign of piers or abutments to avoid areas of deep scour or overtopping 

scour holes from adjacent foundation elements  

 Addition of guide banks, dikes or other river training works to provide for smoother flow 

transitions or to control lateral movement of the channel 

 Enlargement of the passing water area 

 Relocation of the crossing to avoid an undesirable location 

5.3.1 RAISING THE GRADE OF THE BRIDGE 

One possible solution to overtopping is raising the grade of the bridges to create more waterways 

to pass the excess stream flow that may occur due to the future predicted climate extremes. Then 

the bridges can accommodate larger flood events (Figure 5-7 and Figure 5-8). These graphs 

show, a mere increase of one-foot height, can allow the bridges to survive for a greater flood 

flow. US 59, which have overtopping potential of 90-years (under MM5I-HADCM3 model), can 

survive 100-year flood flow after raising it by one-foot.  
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Figure 5-7 Grade Increase of the Bridge US59, Houston, Texas 

 

 

Figure 5-8 Grade Increase of the Bridge SH36, Houston, Texas 
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Besides, colossal cost implication, the raising of the grade may make the bridge more vulnerable 

to scouring as more water will pass through the bridge opening with higher pressure. Thus, the 

elevation increase should be associated with proper countermeasures for scouring.  

5.3.2 SCOUR COUNTERMEASURES 

Scour countermeasures protect the bridge foundation, pier or abutment against scouring by 

providing a physical barrier, such as riprap, gabions, blocks, which increases the resistance of the 

bed materials (Wang, Yu, and Liang, 2017). While there are several options are available for 

countermeasures, selection of an appropriate one depends on the following factors (Lagasse et 

al., 2009): 

 Scour Mechanism 

 Stream Characteristics 

 Construction or Maintenance Requirements  

 Potential for Vandalism 

 Costs 

To keep up with the objective of the study to be qualitative, meaning no site visit, a qualitative 

approach to find a select appropriate countermeasure for affected pier has been discussed below: 

Lagasse et al. (2007) have provided a selection methodology of appropriate countermeasure for 

the protection of piers, based on establishing a Selection Index (SI). In this study, the following 

techniques have been analyzed: 

 Standard (loose) riprap 

 Partially grouted riprap 

 Articulating concrete blocks 

 Gabion mattresses 

 Grout-filled mattresses 

 Grout-filled bags 
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The selection index (SI) consists of five factors to consider and the technique with the highest SI 

value is selected as an appropriate solution for the bridge. SI is calculated as follows:  

SI = (S1 x S2 x S3 x S4)/LCC 

Where, 

S1: Bed Materials size and transport 

S2: Severity of debris or ice loading 

S3: Constructability constraints 

S4: Inspection and maintenance requirements 

LCC: Life-cycle costs 

The flow charts illustrating the selection factors are presented in Figure 5-9. 
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                                                                      (a)  
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                                                                         (b) 
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                                                                       (c)  
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                                                                      (d)  
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                                                                             (e)  

Figure 5-9 Flow Charts Illustrating Selection Factors for Scour Countermeasures (a)Based 

on Bed Material Characteristics (b) Based on Impact of Ice or Debris Load (c)and (d)Based 

on  Construction Requirements and (e) Based on Inspection and Maintenance [Reprinted 

from Lagasse et al., (2007)
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Selection of countermeasure for Bridge US 59: 

Bridge: US59 crossing West Fork San Jacinto River 

Size of Bed Material = 0.03 mm (No Bed Formation) 

Ice/debris Loading = Low to moderate 

Velocity of the river reach = 3ft/sec to 20 ft/sec 

Foundation type = Deep footing 

Assumptions: 

 Underwater placement of the instruments 

 Equipment access is good 

 Inspection and maintenance operation has to be performed underwater 

 Same Life-cycle costs for all techniques 

Considering all the factors mentioned in the matrix, the value of SI for different techniques are as 

follows in Table 5-6. 

Table 5-6 Selection Index for bridge US59, Houston, Texas 

Countermeasure S1 S2 S3 S4 SI 

Riprap 5 5 5 4 19 

Partially Grouted Riprap 5 5 0 4 14 

Articulating Concrete Blocks 5 5 1 3 14 

Grout-filled Bags 5 5 2 2 14 

Grout-filled Mattresses 5 5 0 2 12 

Gabions, Gabion Mattresses 5 5 1 1 12 

 

So, based on SI value, for bridge US59, Riprap is the preferable countermeasure technique. The 

example of riprap placing has been captured in Figure 5-10, which shows three placement 

conditions of riprap, (a) on the surface, (b) placement on excavated or scoured surface and in (c) 

riprap has been placed in depth in the bed. 
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Figure 5-10 Pier Protection against Scouring Using Riprap [Reprinted from Lagasse et al., 

(2007)] 
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6. FLOOD DEPTH PREDICTION FRAMEWORK USING MACHINE 

LEARNING 

6.1 INTRODUCTION 

Machine learning is a discipline of data science that aims to train a machine to predict or 

anticipate the outcomes of a prescribed input. The presence of complex relationship/pattern 

between inputs and outputs requires the use of machine learning. Although machine learning has 

been used already in Civil Engineering, its application has been limited. In this study, a 

framework is proposed and benefits derived are demonstrated through a flood mapping example. 

6.2 BACKGROUND 

Machine learning is used to predict or anticipate the outcomes or pattern that traditional 

analytical method cannot asses. Artificial neural network is a discipline of machine learning that 

attempts to imitate learning similar to that of brain’s neurons. Artificial neural networks use 

learning algorithms that require training. The training dataset consists of inputs and associated 

output.  Machine learning can be seen as a black box model (Figure 6-1) where the input is a 

stimulus that a neuron captures, and then it passes down the information to other neurons, the 

final layer of neurons then provides the output. The physical relationship between input and 

output is not necessarily known. Random Forest algorithm is utilized as a 

classification/regression tool for prediction. Random forest algorithm works like a combination 

of decision trees that come up with rules to make a prediction based on the training dataset. 

Random Forest algorithm is utilized as a classification/regression tool for prediction. Random 

forest algorithm works like a combination of decision trees that come up with rules to make a 

prediction based on the training dataset. 
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6.3 METHODOLOGY 

A framework for machine learning utilization in civil engineering is required to achieve optimal 

results. The framework can be comprised of four steps: formulating and investigating a specific 

problem, collect data, integrate problem, data and machine learning algorithms, and optimize 

machine learning usage. 

Flooding in urban development is caused either due to ineffectiveness or design capacity of the 

drainage network. Typically, FEMA develops flood maps by utilizing hydrologic and hydraulic 

modeling of an area. Typical data used for hydrologic/hydraulic data are elevation, slope, flow 

accumulation, land use, and rainfall intensity. Traditionally, rainfall intensity has been utilized 

either in rainfall-runoff models (rational method) or in the stochastic processes (hydrograph 

analysis) to generate runoff that is later utilized in hydraulic modeling along with channel/street 

elevation, slope, and land use. 

Flood maps can be developed by using 1D, 2D or 1D/2D hydraulic models, however, each one 

of them has their limitations. The 1D models do not account for water movement in any other 

dimensions. However, the 2D model requires more computational time. Regardless of the 

method used, a relationship between input and output values for prediction is needed. However, 

machine learning algorithms such as artificial neural networks (ANN) does not require to have a 

relationship between inputs and output values. ANN models use a training set containing input 

and output values to develop a regression or correlation that can later be utilized to predict 

outputs of a new set of inputs. The framework requires integration of the civil engineering 

problem and machine learning algorithm. 

Input Output

Figure 6-1 Black Box Model Diagram 
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In the case of flood maps, the trend is captured using geo-locations (such as latitude and 

longitude) and combining them with input hydrologic and hydraulic data requirements, and flood 

elevations. Machine learning optimization can be achieved by changing the number of training 

points required for training, randomizing training point selection, and by sorting the training 

dataset. Although machine learning algorithms function similar to a black box model, a strategy 

is needed to develop procedures for optimal usage. 

FEMA’s geoportal allows for acquiring flood maps to use in GIS software. The layer “Base 

Flood Elevation” is used to determine the flood elevation at a point in a region. FEMA’s flood 

maps use grids that are approximately 480 square miles. Once selected a region, it is required to 

use geoprocessing tools that allow extracting hydrologic and hydraulic information, along with 

geospatial descriptors. 

Scikit-learn is an open-source library in python that is used to develop regression-based machine 

learning algorithms. The algorithm requires to have normalized inputs (latitude, longitude, 

elevation, slope, flow accumulation, land use) for both training and testing. The training dataset 

contains inputs and the associated outputs, while the testing only has the inputs. The testing 

dataset is used to verify the predictability of the learning algorithm. The input and output 

variables require to be normalized by the minimum (as in the case of longitude that has only 

negative values) or the maximum value. The algorithm also returns the mean squared error of the 

prediction and the real value. 

6.4 ANALYSIS AND RESULTS 

The machine learning algorithm was utilized by analyzing the flood maps in Houston, Texas. 

According to USGS’s flood-depth-duration maps, Houston’s 100-year rainfall storm results in a 

precipitation of 11.5 inches. ArcMap was utilized to perform geoprocessing tools once flood 

maps of Houston were obtained. The inputs utilized for machine learning algorithm were latitude 

and longitude (in decimal degrees), elevation (in VNAD86 Datum), slope, flow accumulation, 

land use, precipitation, and base flood elevation. Slope and flow accumulation was calculated 

using ArcMap’s tools Slope and Flow Accumulation.  

The random forest (Scikit-learn library tool) machine learning algorithm was used to predict the 

flood depth in the Houston region. The algorithm was run by varying percentage of data points. 
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The variation of the mean squared error versus the percent of training points is shown in Figure 2 

which suggests the need for only 60% training points. 

The geospatial variation was assessed by comparing the flood depth variation with space of both 

the original and predicted points. A raster was used for this. A raster shows a georeferenced 

image where the pixel has a valued. In this case, the pixels represent the flood depth of the 

region. Figure 3 and 4 show the flood depth variation with space for both the original and 

predicted points, respectively. 

Even though Figure 6-2 shows that the mean squared error converges rapidly after using 60 % of 

the training points, Figure 6-3 and Figure 6-4 show that 80 percent of the training points are 

required to achieve better spatial accuracy in comparison with the original dataset. 

 

Figure 6-2 Mean Squared Error vs. Percent of Training Points 
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Figure 6-3 original Flood Depth Raster and Contours 

 

 

 

Figure 6-4 Predicted Raster and Contours 
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6.5 CONCLUSION 

Machine learning algorithms are powerful tools that can be used when a complicated pattern or 

relationship defines a problem. Even though hydrologic/hydraulic modeling exists for flood map, 

the machine learning algorithm proves to be useful in determining the flood depth with 80 % of 

known points. The algorithm, in this case, does not provide for randomization and does not take 

into account if there is any bias regarding minimum or maximum values. Further studies should 

be conducted to assess the reliability of machine learning algorithms by selecting random 

training points based on statistical patterns. 
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7. CLOSURE 

7.1 SUMMARY  

Global climates are significantly changing over the years and are causing an increased number of 

extreme weather events. These changes of climate have a significant effect on the highway 

infrastructures, such as bridges. Hydraulic design of bridges is primarily focused on the flood 

frequency for plausible vulnerability such as overtopping and scouring.  Climate change causes 

the change in the frequency of these flood events. This study was done to find out the future 

climate change predicted from climate models extracted from NARCCAP database and using 

them to quantify the vulnerability of bridges in the Houston-Galveston area of Texas. For this, a 

hydraulic model has been developed using HEC-RAS. This study also evaluates the annual 

economic loss for bridge failure and suggests possible adaptation measures.  

7.2 CONCLUSIONS 

The findings from this study are as follows: 

 Most of the climate models predict increased precipitation in future for cities of Texas 

and New Mexico. But not significant changes are predicted for cities of Louisiana, 

Arkansas, and Oklahoma. 

  Climate prediction by the climate models varies with location. For instance, in Texas 

MM5I-HADCM3 predicts more precipitation than the existing one, but in Oklahoma, the 

same model predicts less than the existing precipitation. 

 For Houston (Texas), climate models predict the highest increase of precipitation of 

10.2%, which results in 11% more streamflow in West Fork San Jacinto River.  

 The increased amount of flow in future will increase overtopping potential for bridges. 

Bridges will be overtopped for earlier flood events. For example, US59 Bridge will be 

overtopped for 90-years flood event instead of 119-years flood event and SH36 Bridge 

will be overtopped at 87-year flood event instead of a 127-year flood event. 

 Scour condition will also worsen under the increased precipitation scenario. Bridge US 

59 is a scour critical bridge as per as the NBI record and the allowable scour depth for 
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this bridge will reach for 55-year flood events under existing climatic condition. 

However, for future climate data, the bridge will undergo the exceeding of allowable 

scour depth for 43-year flood events, which is 12-years earlier than the existing climatic 

condition. 

 The model predicted increased precipitation poses a risk of $63,139 more annual loss for 

the bridge US59. 

  Raising the grade of the bridge can solve the overtopping problem. Increasing the grade 

of the bridge by only one-foot for bridge US59 will allow 12-years more intense flood 

events through the bridge without overtopping. 

  Proper choice of scour countermeasures can be made by a site visit and clear 

understanding of the field condition of the bridge and the channel. 

7.3 LIMITATIONS AND FUTURE WORK 

This study has been performed using different models, such as climate models, hydrologic 

models, hydraulic model, scour model, etc. All of these models have some limitations due to 

inherent uncertainties. The uncertainties associated with the models have been stated below: 

 The uncertainties in climate models primarily come from three main sources, such as the 

unpredicted nature of the climatic systems (natural variability), the inability to model the 

earth’s many complex processes (model uncertainty) and the inability to project future 

societal choices such as energy use (scenario uncertainty). Proper bias correction or 

ensembles can reduce the amount of uncertainty in climate prediction (Dikanski et al., 

2018). Although climate uncertainty cannot be eliminated completely, and it remains as a 

barrier to effective adaptation (Green et al., 2014 and Reeder et al. 2011). 

 Estimation of flood frequency using hydrologic models such as regional regression 

models possesses their source of uncertainty. Like in this study, USGS regional 

regression equations have been used, which have been generated based on 683-gauge 

station data and the characteristic of the catchment area has been defined with a single 

parameter 'omega.'  

 In bridge scour assessment most, common practice is using the empirical models. 22 

empirical models have been found for scouring estimation by Sheppard et al. (2014). 
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Uncertainty arises using these models, as scour depends on the non-linear interaction 

between water flow and sediment transport, which can be evaluated with high-resolution 

geomorphological simulation models (Dikanski et al.,2018). Lagasee et al. (2013), has 

evaluated HEC-18 models’ uncertainty by comparing model simulated results to 

observational field data. Results show that uncertainties of models may vary based on the 

flow conditions. The study also found that local scour is less sensitive to the flow 

conditions than the contraction scour, which lead to the conclusion by Dikanski et al. 

(2018), contraction scour is more sensitive to climate change compared to local scour.  

Recommendations for future research are stated below: 

 Comparative analysis between climate prediction data sources, e.g., CMIP3, CMIP5, etc. 

should be performed to identify most suitable climate prediction models to be 

incorporated in bridge hydraulics study. 

 For installation or adaptation of countermeasures for scour, a detailed field survey should 

be performed for analyzing the suitability of the technique.  
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A. CLIMATE DATA 

Bias Correction for Amarillo, Texas: 

Table A-1 Bias Corrected Precipitation Data, Amarillo, Texas 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias Corrected 

(in) 

CRCM-CCSM 17.9 18.2 18.1 

CRCM-CGCM3 19.7 18.9 19.2 

ECP2-GFDL 21.4 24.5 16.1 

ECP2-HADCM3 15.3 17.6 15.9 

HRM3-GFDL 27.0 29.7 16.7 

HRM3-HADCM3 21.5 23.1 17.1 

MM5I-CCSM 17.1 17.9 17.6 

MM5I-HADCM3 21.3 21.7 18.0 

RCM3-CGCM3 20.0 21.7 16.9 

RCM3-GFDL 29.0 29.7 18.0 

WRFG-CCSM 14.5 14.5 18.4 

WRFG-CGCM3 15.1 13.6 20.4 

 

 

Figure A-1 Bias Correction for Mean Annual Precipitation, Amarillo, Texas 
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Bias Correction for Austin, Texas: 

Table A-2 Bias Corrected Precipitation Data, Austin, Texas 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias Corrected 

(in) 

CRCM-CCSM 18.6 20.7 28.4 

CRCM-CGCM3 27.7 27.7 31.7 

ECP2-GFDL 33.4 36.7 28.7 

ECP2-HADCM3 41.0 37.5 34.6 

HRM3-GFDL 34.7 37.6 29.2 

HRM3-HADCM3 42.4 38.6 34.7 

MM5I-CCSM 17.2 19.2 28.2 

MM5I-HADCM3 37.5 32.9 36.1 

RCM3-CGCM3 35.3 34.5 32.3 

RCM3-GFDL 43.2 43.4 31.5 

WRFG-CCSM 24.3 24.4 31.5 

WRFG-CGCM3 28.2 27.0 33.0 

 

 

Figure A-2 Bias Correction for Mean Annual Precipitation, Austin, Texas 
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Bias Correction for Dallas, Texas: 

Table A-3 Bias Corrected Precipitation Data, Dallas, Texas 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias Corrected 

(in) 

CRCM-CCSM 21.0 22.0 33.2 

CRCM-CGCM3 27.6 26.8 35.8 

ECP2-GFDL 32.2 37.1 30.2 

ECP2-HADCM3 33.3 33.2 34.9 

HRM3-GFDL 36.8 37.1 34.5 

HRM3-HADCM3 36.3 34.7 36.4 

MM5I-CCSM 21.9 23.2 32.9 

MM5I-HADCM3 31.0 29.5 36.5 

RCM3-CGCM3 30.9 31.8 33.9 

RCM3-GFDL 37.8 37.2 35.3 

WRFG-CCSM 25.0 22.7 38.4 

WRFG-CGCM3 25.3 25.3 34.8 

 

 

Figure A-3 Bias Correction for Mean Annual Precipitation, Dallas, Texas 
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Bias Correction for El Paso, Texas: 

Table A-4 Bias Corrected Precipitation Data, El Paso, Texas 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias Corrected 

(in) 

CRCM-CCSM 13.2 15.6 8.1 

CRCM-CGCM3 11.6 12.5 8.8 

ECP2-GFDL 16.7 16.8 9.4 

ECP2-HADCM3 8.4 9.0 8.9 

HRM3-GFDL 21.9 23.8 8.7 

HRM3-HADCM3 12.2 15.1 7.7 

MM5I-CCSM 9.3 11.7 7.5 

MM5I-HADCM3 12.7 11.1 10.9 

RCM3-CGCM3 34.3 35.3 9.2 

RCM3-GFDL 41.6 42.3 9.3 

WRFG-CCSM 9.8 10.9 8.5 

WRFG-CGCM3 7.1 7.1 9.5 

 

 

Figure A-4 Bias Correction for Mean Annual Precipitation, El Paso, Texas 
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Bias Correction for Fort Worth, Texas: 

Table A-5 Bias Corrected Precipitation Data, Fort Worth, Texas 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 19.8 20.6 32.8 

CRCM-CGCM3 22.0 24.4 30.8 

ECP2-GFDL 31.0 36.1 29.2 

ECP2-HADCM3 32.0 31.6 34.5 

HRM3-GFDL 36.4 37.9 32.7 

HRM3-HADCM3 35.2 33.7 35.7 

MM5I-CCSM 21.0 21.9 32.8 

MM5I-HADCM3 28.2 27.1 35.5 

RCM3-CGCM3 21.5 30.1 24.3 

RCM3-GFDL 36.0 36.1 34.0 

WRFG-CCSM 22.6 20.6 37.3 

WRFG-CGCM3 22.0 21.6 34.7 

 

 

Figure A-5 Bias Correction for Mean Annual Precipitation, Fort Worth, Texas 
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Bias Correction for McAllen, Texas: 

Table A-6 Bias Corrected Precipitation Data, McAllen, Texas 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 24.0 29.2 14.9 

CRCM-CGCM3 42.5 44.1 17.5 

ECP2-GFDL 33.0 38.5 15.5 

ECP2-HADCM3 46.1 35.4 23.6 

HRM3-GFDL 24.2 27.4 16.0 

HRM3-HADCM3 39.6 34.7 20.7 

MM5I-CCSM 10.7 15.6 12.4 

MM5I-HADCM3 44.5 46.3 17.5 

RCM3-CGCM3 51.1 49.7 18.6 

RCM3-GFDL 69.7 69.4 18.2 

WRFG-CCSM 21.4 25.0 15.5 

WRFG-CGCM3 32.0 34.7 16.8 

 

 

Figure A-6 Bias Correction for Mean Annual Precipitation, McAllen, Texa 
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Bias Correction for San Antonio, Texas: 

Table A-7 Bias Corrected Precipitation Data, San Antonio, Texas 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 17.1 19.5 26.5 

CRCM-CGCM3 27.0 27.0 30.2 

ECP2-GFDL 29.4 34.6 25.7 

ECP2-HADCM3 39.1 34.3 34.5 

HRM3-GFDL 30.3 32.6 28.1 

HRM3-HADCM3 39.1 32.9 35.9 

MM5I-CCSM 14.7 16.1 27.5 

MM5I-HADCM3 34.4 30.2 34.5 

RCM3-CGCM3 33.3 32.5 31.0 

RCM3-GFDL 41.7 42.0 30.0 

WRFG-CCSM 24.0 24.4 29.8 

WRFG-CGCM3 25.4 24.8 30.9 

 

 

Figure A-7 Bias Correction for Mean Annual Precipitation, San Antonio, Texas 
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Bias Correction for Albuquerque, New Mexico: 

Table A-8 Bias Corrected Precipitation Data, Albuquerque, New Mexico 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias Corrected 

(in) 

CRCM-CCSM 13.1 14.6 9.2 

CRCM-CGCM3 11.3 11.5 10.1 

ECP2-GFDL 22.8 19.8 11.8 

ECP2-HADCM3 9.4 10.1 9.4 

HRM3-GFDL 22.9 24.4 9.6 

HRM3-HADCM3 15.4 17.7 8.9 

MM5I-CCSM 9.4 11.1 8.7 

MM5I-HADCM3 15.8 15.7 10.3 

RCM3-CGCM3 12.0 14.3 8.6 

RCM3-GFDL 25.4 26.2 9.9 

WRFG-CCSM 14.5 14.6 10.2 

WRFG-CGCM3 12.6 13.3 9.7 

 

 

Figure A-8 Bias Correction for Mean Annual Precipitation, Albuquerque, New Mexico 
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Bias Correction for Las Cruces, New Mexico: 

Table A-9 Bias Corrected Precipitation Data, Las Cruces, New Mexico 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias Corrected 

(in) 

CRCM-CCSM 16.1 18.4 9.0 

CRCM-CGCM3 14.3 15.3 9.7 

ECP2-GFDL 16.7 15.9 10.8 

ECP2-HADCM3 7.2 8.2 9.2 

HRM3-GFDL 25.6 28.9 9.2 

HRM3-HADCM3 15.4 19.3 8.2 

MM5I-CCSM 9.7 11.9 8.4 

MM5I-HADCM3 12.9 11.5 11.6 

RCM3-CGCM3 8.6 9.1 9.8 

RCM3-GFDL 19.2 20.7 9.6 

WRFG-CCSM 11.0 11.8 9.6 

WRFG-CGCM3 8.9 8.7 10.6 

 

 

Figure A-9 Bias Correction for Mean Annual Precipitation, Las Cruces, New Mexico 
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Bias Correction for Taos, New Mexico: 

Table A-10 Bias Corrected Precipitation Data, Taos, New Mexico 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 17.2 18.3 14.6 

CRCM-CGCM3 15.6 16.1 15.0 

ECP2-GFDL 35.3 42.0 13.0 

ECP2-HADCM3 26.3 29.7 13.7 

HRM3-GFDL 33.6 36.1 14.4 

HRM3-HADCM3 26.0 28.9 14.0 

MM5I-CCSM 17.2 21.8 12.2 

MM5I-HADCM3 34.1 32.6 16.2 

RCM3-CGCM3 31.3 31.8 15.3 

RCM3-GFDL 41.4 40.6 15.8 

WRFG-CCSM 17.5 17.9 15.2 

WRFG-CGCM3 16.9 18.4 14.3 

 

 

Figure A-10 Bias Correction for Mean Annual Precipitation, Taos, New Mexico 
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Bias Correction for Santa Fe, New Mexico: 

Table A-11 Bias Corrected Precipitation Data, Santa Fe, New Mexico 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 18.5 20.0 12.2 

CRCM-CGCM3 16.6 17.1 12.8 

ECP2-GFDL 32.2 32.7 13.0 

ECP2-HADCM3 19.6 21.6 12.0 

HRM3-GFDL 21.9 23.6 12.3 

HRM3-HADCM3 15.5 17.6 11.6 

MM5I-CCSM 13.3 16.1 10.9 

MM5I-HADCM3 25.2 24.0 13.8 

RCM3-CGCM3 15.3 18.1 11.1 

RCM3-GFDL 30.9 30.9 13.2 

WRFG-CCSM 16.2 16.8 12.7 

WRFG-CGCM3 15.0 15.7 12.6 

 

 

Figure A-11 Bias Correction for Mean Annual Precipitation, Santa Fe, New Mexico 
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Bias Correction for Roswell, New Mexico: 

Table A-12 Bias Corrected Precipitation Data, Roswell, New Mexico 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 14.9 15.4 11.4 

CRCM-CGCM3 13.8 14.5 11.2 

ECP2-GFDL 17.3 16.8 12.2 

ECP2-HADCM3 7.7 8.7 10.4 

HRM3-GFDL 20.4 23.8 10.1 

HRM3-HADCM3 13.1 15.8 9.8 

MM5I-CCSM 10.6 10.7 11.6 

MM5I-HADCM3 13.0 11.4 13.4 

RCM3-CGCM3 14.7 16.0 10.8 

RCM3-GFDL 25.8 27.3 11.1 

WRFG-CCSM 13.9 14.1 11.6 

WRFG-CGCM3 13.9 12.3 13.4 

 

 

Figure A-12 Bias Correction for Mean Annual Precipitation, Roswell, New Mexico 
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Bias Correction for Farmington, New Mexico: 

Table A-13 Bias Corrected Precipitation Data, Farmington, New Mexico 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 17.4 19.7 8.2 

CRCM-CGCM3 14.2 14.6 9.0 

ECP2-GFDL 29.9 27.0 10.3 

ECP2-HADCM3 15.3 15.8 9.0 

HRM3-GFDL 15.6 16.5 8.8 

HRM3-HADCM3 10.2 12.0 7.9 

MM5I-CCSM 10.5 12.4 7.9 

MM5I-HADCM3 17.3 17.5 9.2 

RCM3-CGCM3 16.9 19.0 8.2 

RCM3-GFDL 34.0 34.1 9.3 

WRFG-CCSM 12.5 13.1 8.9 

WRFG-CGCM3 11.3 11.7 9.0 

 

 

Figure A-13 Bias Correction for Mean Annual Precipitation, Farmington, New Mexico 
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Bias Correction for Lordsburg, New Mexico: 

Table A-14 Bias Corrected Precipitation Data, Lordsburg, New Mexico 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 12.6 16.1 9.8 

CRCM-CGCM3 10.7 11.0 12.2 

ECP2-GFDL 22.8 20.5 13.9 

ECP2-HADCM3 11.1 11.3 12.3 

HRM3-GFDL 25.5 28.2 11.3 

HRM3-HADCM3 12.8 15.1 10.6 

MM5I-CCSM 9.4 13.3 8.9 

MM5I-HADCM3 14.7 13.2 13.9 

RCM3-CGCM3 9.5 10.1 11.8 

RCM3-GFDL 22.6 24.6 11.5 

WRFG-CCSM 10.4 13.3 9.8 

WRFG-CGCM3 8.9 8.6 13.0 

 

 

Figure A-14 Bias Correction for Mean Annual Precipitation, Lordsburg, New Mexico 
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Bias Correction for Lafayette, Louisiana: 

Table A-15 Bias Corrected Precipitation Data, Lafayette, Louisiana 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias Corrected 

(in) 

CRCM-CCSM 24.1 26.4 54.0 

CRCM-CGCM3 41.8 41.5 59.8 

ECP2-GFDL 37.8 40.5 55.3 

ECP2-HADCM3 48.0 45.9 62.1 

HRM3-GFDL 36.2 40.3 53.2 

HRM3-HADCM3 48.8 48.1 60.1 

MM5I-CCSM 30.6 32.7 55.5 

MM5I-HADCM3 60.1 55.1 64.6 

RCM3-CGCM3 58.7 57.5 60.6 

RCM3-GFDL 56.2 55.5 60.1 

WRFG-CCSM 28.5 31.1 54.3 

WRFG-CGCM3 53.3 51.3 61.7 

 

 

Figure A-15 Bias Correction for Mean Annual Precipitation, Lafayette, Louisiana 
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Bias Correction for Baton Rouge, Louisiana: 

Table A-16 Bias Corrected Precipitation Data, Baton Rouge, Louisiana 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias Corrected 

(in) 

CRCM-CCSM 23.7 26.1 55.0 

CRCM-CGCM3 40.1 38.2 63.5 

ECP2-GFDL 51.5 58.1 53.6 

ECP2-HADCM3 65.2 64.4 61.3 

HRM3-GFDL 38.6 43.0 54.3 

HRM3-HADCM3 49.8 49.2 61.3 

MM5I-CCSM 32.9 34.8 57.2 

MM5I-HADCM3 61.5 56.1 66.4 

RCM3-CGCM3 60.8 59.0 62.4 

RCM3-GFDL 58.0 56.2 62.5 

WRFG-CCSM 29.5 32.8 54.4 

WRFG-CGCM3 58.1 54.5 64.6 

 

 

Figure A-16 Bias Correction for Mean Annual Precipitation, Lafayette, Louisiana 
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Bias Correction for New Orleans, Louisiana: 

Table A-17 Bias Corrected Precipitation Data, New Orleans, Louisiana 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 24.1 26.7 49.7 

CRCM-CGCM3 42.3 41.4 56.1 

ECP2-GFDL 58.1 60.2 53.0 

ECP2-HADCM3 76.9 64.6 65.3 

HRM3-GFDL 38.6 42.4 50.0 

HRM3-HADCM3 49.8 50.0 54.7 

MM5I-CCSM 24.7 27.1 50.1 

MM5I-HADCM3 106.2 71.4 81.7 

RCM3-CGCM3 70.6 66.7 58.1 

RCM3-GFDL 64.2 64.5 54.7 

WRFG-CCSM 32.8 36.1 49.9 

WRFG-CGCM3 66.7 66.7 54.9 

 

 

Figure A-17 Bias Correction for Mean Annual Precipitation, New Orleans, Louisiana 
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Bias Correction for Shreveport, Louisiana: 

Table A-18 Bias Corrected Precipitation Data, Shreveport, Louisiana 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 26.1 27.7 44.9 

CRCM-CGCM3 36.6 34.9 49.9 

ECP2-GFDL 45.9 48.2 45.3 

ECP2-HADCM3 45.1 46.3 46.4 

HRM3-GFDL 41.6 44.8 44.1 

HRM3-HADCM3 43.5 44.1 46.9 

MM5I-CCSM 28.4 30.6 44.1 

MM5I-HADCM3 43.8 41.6 50.1 

RCM3-CGCM3 38.4 40.6 45.0 

RCM3-GFDL 45.0 45.4 47.2 

WRFG-CCSM 26.3 27.3 45.8 

WRFG-CGCM3 36.3 35.4 48.8 

 

 

Figure A-18 Bias Correction for Mean Annual Precipitation, Shreveport, Louisiana 
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Bias Correction for Oklahoma City, Oklahoma: 

Table A-19 Bias Corrected Precipitation Data, Oklahoma City, Oklahoma 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 21.2 21.0 35.7 

CRCM-CGCM3 26.2 24.7 37.5 

ECP2-GFDL 28.9 32.5 31.5 

ECP2-HADCM3 23.1 25.9 31.5 

HRM3-GFDL 34.8 37.7 32.6 

HRM3-HADCM3 32.3 31.7 36.0 

MM5I-CCSM 23.7 23.0 36.4 

MM5I-HADCM3 26.4 24.9 37.5 

RCM3-CGCM3 27.8 30.2 32.5 

RCM3-GFDL 35.1 34.7 35.8 

WRFG-CCSM 19.9 18.6 37.9 

WRFG-CGCM3 19.7 18.7 37.1 

 

 

Figure A-19 Bias Correction for Mean Annual Precipitation, Oklahoma City, Oklahoma 
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Bias Correction for Tulsa, Oklahoma: 

Table A-20 Bias Corrected Precipitation Data, Tulsa, Oklahoma 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias Corrected 

(in) 

CRCM-CCSM 27.2 27.6 38.5 

CRCM-CGCM3 33.9 31.5 42.2 

ECP2-GFDL 32.1 36.2 34.7 

ECP2-HADCM3 26.8 29.7 35.3 

HRM3-GFDL 41.2 43.3 37.2 

HRM3-HADCM3 38.0 37.8 39.2 

MM5I-CCSM 28.3 27.9 39.6 

MM5I-HADCM3 31.5 29.1 42.3 

RCM3-CGCM3 32.7 34.6 36.9 

RCM3-GFDL 39.8 40.4 38.5 

WRFG-CCSM 21.0 20.3 40.5 

WRFG-CGCM3 25.3 21.8 45.3 

 

 

Figure A-20 Bias Correction for Mean Annual Precipitation, Tulsa, Oklahoma 
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Bias Correction for Stillwater, Oklahoma: 

Table A-21 Bias Corrected Precipitation Data, Stillwater, Oklahoma 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 23.7 23.3 36.7 

CRCM-CGCM3 28.9 26.9 38.6 

ECP2-GFDL 29.8 32.8 32.6 

ECP2-HADCM3 23.4 26.4 31.8 

HRM3-GFDL 36.9 39.2 33.8 

HRM3-HADCM3 33.7 33.8 35.9 

MM5I-CCSM 23.9 24.1 35.7 

MM5I-HADCM3 27.6 25.7 38.5 

RCM3-CGCM3 29.5 32.0 33.2 

RCM3-GFDL 37.3 37.1 36.2 

WRFG-CCSM 17.9 17.9 36.0 

WRFG-CGCM3 21.2 18.4 41.4 

 

 

Figure A-21 Bias Correction for Mean Annual Precipitation, Stillwater, Oklahoma 
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Bias Correction for Lawton, Oklahoma: 

Table A-22 Bias Corrected Precipitation Data, Lawton, Oklahoma 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 20.0 20.2 30.1 

CRCM-CGCM3 24.7 23.3 32.3 

ECP2-GFDL 25.1 29.2 26.1 

ECP2-HADCM3 20.2 22.4 27.4 

HRM3-GFDL 18.2 20.1 27.6 

HRM3-HADCM3 15.1 14.8 31.0 

MM5I-CCSM 20.9 20.2 31.5 

MM5I-HADCM3 24.4 23.0 32.3 

RCM3-CGCM3 23.7 23.8 30.3 

RCM3-GFDL 29.3 30.4 29.3 

WRFG-CCSM 17.7 16.5 32.8 

WRFG-CGCM3 17.3 16.4 32.2 

 

 

Figure A-22 Bias Correction for Mean Annual Precipitation, Lawton, Oklahoma 
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Bias Correction for Ardmore, Oklahoma: 

Table A-23 Bias Corrected Precipitation Data, Ardmore, Oklahoma 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 22.2 22.6 29.8 

CRCM-CGCM3 27.9 26.9 31.4 

ECP2-GFDL 28.5 33.5 25.8 

ECP2-HADCM3 25.9 27.7 28.4 

HRM3-GFDL 37.6 42.4 26.9 

HRM3-HADCM3 36.4 35.9 30.8 

MM5I-CCSM 25.1 23.6 32.3 

MM5I-HADCM3 28.5 27.3 31.7 

RCM3-CGCM3 28.5 29.9 29.0 

RCM3-GFDL 35.6 35.2 30.7 

WRFG-CCSM 20.5 19.9 31.3 

WRFG-CGCM3 21.5 20.6 31.7 

 

 

Figure A-23 Bias Correction for Mean Annual Precipitation, Ardmore, Oklahoma 
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Bias Correction for Fayetteville, Arkansas: 

Table A-24 Bias Corrected Precipitation Data, Fayetteville, Arkansas 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 31.8 32.0 44.6 

CRCM-CGCM3 38.6 36.7 47.2 

ECP2-GFDL 39.8 45.1 39.6 

ECP2-HADCM3 36.0 37.1 43.6 

HRM3-GFDL 46.7 47.7 43.9 

HRM3-HADCM3 43.8 42.2 46.6 

MM5I-CCSM 32.5 32.0 45.5 

MM5I-HADCM3 35.1 33.0 47.7 

RCM3-CGCM3 37.9 39.3 43.3 

RCM3-GFDL 43.0 41.8 46.1 

WRFG-CCSM 25.6 24.9 46.1 

WRFG-CGCM3 31.3 27.9 50.2 

 

 

Figure A-24 Bias Correction for Mean Annual Precipitation, Fayetteville, Arkansas 
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Bias Correction for Fort Smith, Arkansas: 

Table A-25 Bias Corrected Precipitation Data, Fort Smith, Arkansas 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 29.0 29.7 44.4 

CRCM-CGCM3 36.5 35.6 46.7 

ECP2-GFDL 38.2 42.8 40.6 

ECP2-HADCM3 34.5 35.6 44.1 

HRM3-GFDL 38.6 38.4 45.7 

HRM3-HADCM3 34.7 33.3 47.4 

MM5I-CCSM 29.7 30.2 44.7 

MM5I-HADCM3 33.5 31.5 48.5 

RCM3-CGCM3 36.8 39.6 42.3 

RCM3-GFDL 41.4 41.0 45.9 

WRFG-CCSM 27.5 26.1 47.9 

WRFG-CGCM3 30.8 29.6 47.4 

 

 

Figure A-25 Bias Correction for Mean Annual Precipitation, Fort Smith, Arkansas 
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Bias Correction for Conway, Arkansas: 

Table A-26 Bias Corrected Precipitation Data, Conway, Arkansas 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 30.0 30.3 45.3 

CRCM-CGCM3 38.4 37.2 47.2 

ECP2-GFDL 43.0 47.2 41.8 

ECP2-HADCM3 41.0 40.2 46.7 

HRM3-GFDL 29.9 33.4 41.1 

HRM3-HADCM3 39.3 34.9 51.7 

MM5I-CCSM 34.0 34.6 45.1 

MM5I-HADCM3 42.7 38.0 51.4 

RCM3-CGCM3 42.0 42.0 45.8 

RCM3-GFDL 43.7 43.6 46.0 

WRFG-CCSM 32.0 31.7 46.4 

WRFG-CGCM3 39.4 37.0 48.8 

 

 

Figure A-26 Bias Correction for Mean Annual Precipitation, Conway, Arkansas 
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Bias Correction for Hot Springs, Arkansas: 

Table A-27 Bias Corrected Precipitation Data, Hot Springs, Arkansas 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 28.1 29.2 50.7 

CRCM-CGCM3 37.0 36.6 53.2 

ECP2-GFDL 44.3 48.7 47.8 

ECP2-HADCM3 41.6 42.4 51.7 

HRM3-GFDL 26.3 29.1 47.5 

HRM3-HADCM3 34.9 30.8 59.7 

MM5I-CCSM 34.9 36.0 51.1 

MM5I-HADCM3 44.2 39.9 58.3 

RCM3-CGCM3 41.4 42.0 51.8 

RCM3-GFDL 45.4 45.2 52.8 

WRFG-CCSM 30.4 30.2 53.0 

WRFG-CGCM3 38.6 36.3 56.0 

 

 

Figure A-27 Bias Correction for Mean Annual Precipitation, Hot Springs, Arkansas 
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Bias Correction for Pine Bluff, Arkansas: 

Table A-28 Bias Corrected Precipitation Data, Pine Bluff, Arkansas 

Climate Models 
Future Simulation 

(in) 

Current Simulation 

(in) 

Bias-Corrected 

(in) 

CRCM-CCSM 30.4 31.2 45.3 

CRCM-CGCM3 39.1 37.6 48.5 

ECP2-GFDL 44.6 49.0 42.5 

ECP2-HADCM3 44.0 44.6 46.1 

HRM3-GFDL 45.1 48.0 43.8 

HRM3-HADCM3 45.0 44.2 47.5 

MM5I-CCSM 34.2 34.9 45.7 

MM5I-HADCM3 45.1 39.5 53.2 

RCM3-CGCM3 43.5 43.6 46.5 

RCM3-GFDL 45.6 45.5 46.7 

WRFG-CCSM 30.0 30.2 46.3 

WRFG-CGCM3 38.7 36.9 48.9 

 

 

Figure A-28 Bias Correction for Mean Annual Precipitation, Pine Bluff, Arkansas 
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